Project description:The heterogeneity of bacterial cells in biofilms is an important property. We performed single-cell sequencing to profile heterogeneous cell populations within Vibrio alginolyticus biofilm. Our analysis has revealed the key functional compartments for the composition and development of biofilms
Project description:The heterogeneity of bacterial cells in biofilms is an important property. We performed single-cell sequencing to profile heterogeneous cell populations within Vibrio alginolyticus biofilm. Our analysis has revealed the key functional compartments for the composition and development of biofilms
Project description:The copper redhorse (Moxostoma hubbsi) is an endangered fish endemic to Quebec, Canada that is only known to spawn in two locations within the Richelieu River, a waterway draining a significant area of agricultural land. Accordingly, concerns have been raised over the impacts that agricultural pesticide contamination of spawning grounds and nursery habitats within the Richelieu River may have on early life stage copper redhorse. We assessed the effects of contaminants on early life stages of copper redhorse and river redhorse (Moxostoma carinatum), a closely related fish that shares the copper redhorse’s habitat and spawning grounds but is distributed more widely and is not yet listed as endangered. Copper and river redhorse embryos (1000 each) were exposed to either Richelieu River water in an in-situ flow-through system or to laboratory water used as a control. We assessed embryos hatching time, incidence of deformities and survival in copper and river redhorses. We then performed RNA sequencing on copper redhorse larvae to better understand changes due to river water exposure. We identified 341 compounds in the river water that were absent from lab water. Pesticide concentrations in the river peaked following rainfall during the spawning season. Embryos exposed to river water hatched prematurely at 63.0 and 59.2 cumulative degree days (CDD) compared to 65.4 and 69.9 CDD in laboratory water for river and copper redhorse, respectively. Copper redhorse exposed to river water also had a significantly lower survival rate than laboratory water (73% vs. 93%). RNA sequencing of copper redhorse revealed 18 differentially expressed genes (DEGs) following river water exposure. Eight of the upregulated DEGs (cd44, il1b, lamb3, lamc2, tgm5, orm1, saa, acod1) are linked to immune function and injury response and 7 of the downregulated DEGs (cpa2, ctrb, cela2a, ctrl, cpa1, prss1, cel) are involved with digestion and nutrient absorption. This study provided valuable data on the effects of anthropogenic contaminants present in the Richelieu River and increased our knowledge on the individual and mixture effects they have on an endangered fish.
Project description:Today, many contaminants of emerging concern can be measured in waters across the United States, including the tributaries of the Great Lakes. However, just because the chemicals can be measured does not mean that they necessarily result in harm to fish and other aquatic species. Complicating risk assessment in these waters is the fact that aquatic species are encountering the chemicals as mixtures, which may have additive or synergistic risks that cannot be calculated using single chemical hazard and concentration-response information. We developed an in vitro effects-based screening approach to help us predict potential liver toxicity and cancer in aquatic organisms using water from specific Great Lakes tributaries: St. Louis River (MN), Bad River (WI), Fox River (WI), Manitowoc River (WI), Milwaukee River (WI), Indiana Harbor Canal (IN), St. Joseph River (MI), Grand River (MI), Clinton River (MI), River Rouge (MI), Maumee River (OH), Vermilion River (OH), Cuyahoga River (OH), Genesee River (NY), and Oswego River (NY). We exposed HepG2 cells for 48hrs to medium spiked with either field collected water (final concentration of environmental samples in the exposure medium were 75% of the field-collected water samples) or purified water. Using a deep neural network we clustered our collection sites from each tributary based on water chemistry. We also performed high throughput transcriptomics on the RNA obtained from the HepG2 cells. We used the transcriptomics data with our Bayesian Inferene for Sustance and Chemical Toxicity (BISCT) Bayesian Network for Steatosis to predict the probability of the field samples yielding a gene expression pattern consistent with predicting steatosis as an outcome. Surprisingly, we found that the probability of steatosis did not correspond to the surface water chemistry clustering. Our analysis suggests that chemical signatures are not informative in predicting biological effects. Furthermore, recent reports published after we obtained our samples, suggest that chemical levels in the sediment may be more relevant for predicting potential biological effects in the fish species developing tumors in the Great Lakes basin.
Project description:Low concentrations of pharmaceutical compounds were shown to induce transcriptional responses in isolated microorganisms, which could have consequences on ecosystem dynamics. In order to test if these transcriptional responses could also be observed in complex river microbial communities, biofilm reactors were inoculated with water from two distinct rivers and supplemented with environmentally relevant doses of four pharmaceutical products (erythromycin-ER, gemfibrozil-GM, sulfamethazine-SN and sulfamethoxazole-SL). To follow the expression of functional genes, we constructed a 9,600 features anonymous DNA microarray platform onto which cDNA from the various biofilms was hybridized.
Project description:Freshwater environments such as rivers receive effluent discharges from wastewater treatment plants, representing a potential hotspot for antibiotic resistance genes (ARGs). These effluents also contain low levels of different antimicrobials including biocides and antibiotics such as sulfonamides that can be frequently detected in rivers. The impact of such exposure on ARG prevalence and microbial diversity of riverine environment is unknown, so the aim of this study was to investigate the release of a sub-lethal concentration (<4 g L-1) of the sulfonamide compound sulfamethoxazole (SMX) on the river bacterial microbiome using a microflume system. This system was a semi-natural in-vitro microflume using river water (30 L) and sediment, with circulation to mimic river flow. A combination of ‘omics’ approaches were conducted to study the impact of SMX exposure on the microbiomes within the microflumes. Metaproteomics did not show differences in ARGs expression with SMX exposure in water.
Project description:In order to understand how Phormidium mats establish, and the role of associated taxa in their development, we collected biofilms over a 19-day growth period during a nitrate-induced bloom event in the Wai-iti River for proteogenomics analysis. At the onset of a late summer bloom, cobbles from the Wai-iti River (Nelson, New Zealand) were removed, cleared of incipient growth with sterile sponges, and placed back into the river. Clearing was gentle as seeding from the pre-existing rock surface is important for bloom establishment [24]. Five pre-cleared cobbles were collected at each of 3 time points to capture the first 3, 6 and 9 days of growth (Table S1). Additional cobbles that contemporaneously developed biofilms were collected at days 12 and 19.
Project description:Full title: Environmental transcriptome analysis of LfeRT32a in its natural microbial community comparing the biofilm and planktonic modes of life. Extreme acidic environments are characterized among other features by the high metal content and the lack of nutrients (oligotrophy). Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers). In the Tinto River (Spain), brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans are abundant. Both microorganisms play a critical role in bioleaching processes for industrial (biominery) and environmental applications (acid mine drainage, bioremediation). The aim of this study was to investigate the physiological differences between the free living (planktonic) and the sessile (biofilm associated) lifestyles of L. ferrooxidans as part of a natural extremely acidophilic community.
Project description:This study describes the influence of selected synthetic macrocycle on the gene expression in Pseudomonas aeruginosa PAO1. In this work, we propose two distinct functionalities responsible for a dual mechanism of action. We identified a water-soluble pillararene whose inner cavity tightly binds to specific homoserine lactones (HSLs) thereby interfering with interbacterial signalling, leading to effective synchronized suppression of exotoxins and biofilms in P. aeruginosa. An additional concerted mechanism of action is suggested that involves the cationic functional side groups on the pillararene that disrupt both the bacterial outer membrane and biofilms, to increase the penetration and efficacy of intracellular antibiotics.
Project description:Biofilms on surfaces pose quality and health risks, resisting traditional antimicrobial methods. Plasma-activated water (PAW) shows promise in biofilm elimination, yet its genetic impact remains unclear. We investigated Escherichia coli biofilm responses to PAW treatment, revealing significant gene expression changes and pathway activations. Knockout mutants of key genes confirmed their role in PAW response. This study enhances our understanding of PAW's anti-biofilm mechanisms and bacterial stress responses.