Project description:Low aerobic exercise capacity is a risk factor for diabetes and strong predictor of mortality; yet some individuals are exercise resistant, and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease-risk, we used selective breeding for 15 generation to develop rat models of low- and high-aerobic response to training. Before exercise training, rats selected as low- and high-responders had similar exercise capacities. However, after 8-wks of treadmill training low-responders failed to improve their exercise capacity, while high-responders improved by 54%. Remarkably, low-responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise resistant phenotype segregates with disease risk. Low-responders had impaired exercise-induced angiogenes0is in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low-responders. Low-responders had increased stress/inflammatory signaling and altered TGFβ signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease.
Project description:Male Sprague-Dawley rats were used to establish exhausted-exercise model by motorized rodent treadmill. Yu-Ping-Feng-San at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Quantitative proteomics was performed for assessing the related mechanism of Yu-Ping-Feng-San.
Project description:Low aerobic exercise capacity is a risk factor for diabetes and strong predictor of mortality; yet some individuals are exercise resistant, and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease-risk, we used selective breeding for 15 generation to develop rat models of low- and high-aerobic response to training. Before exercise training, rats selected as low- and high-responders had similar exercise capacities. However, after 8-wks of treadmill training low-responders failed to improve their exercise capacity, while high-responders improved by 54%. Remarkably, low-responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise resistant phenotype segregates with disease risk. Low-responders had impaired exercise-induced angiogenes0is in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low-responders. Low-responders had increased stress/inflammatory signaling and altered TGFM-NM-2 signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. Cardiac and skeletal muscle from 3 high and 3 low responder rats were examined for differential miRNA expression using Exiqon microarrays
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.
Project description:BackgroundMurine kobuviruses (MuKV) are newly recognized picornaviruses first detected in murine rodents in the USA in 2011. Little information on MuKV epidemiology in murine rodents is available. Therefore, we conducted a survey of the prevalence and genomic characteristics of rat kobuvirus in Guangdong, China.ResultsFecal samples from 223 rats (Rattus norvegicus) were collected from Guangdong and kobuviruses were detected in 12.6% (28) of samples. Phylogenetic analysis based on partial 3D and complete VP1 sequence regions showed that rat kobuvirus obtained in this study were genetically closely related to those of rat/mouse kobuvirus reported in other geographical areas. Two near full-length rat kobuvirus genomes (MM33, GZ85) were acquired and phylogenetic analysis of these revealed that they shared very high nucleotide/amino acids identity with one another (95.4%/99.4%) and a sewage-derived sequence (86.9%/93.5% and 87.5%/93.7%, respectively). Comparison with original Aichivirus A strains, such human kobuvirus, revealed amino acid identity values of approximately 80%.ConclusionOur findings indicate that rat kobuvirus have distinctive genetic characteristics from other Aichivirus A viruses. Additionally, rat kobuvirus may spread via sewage.