Project description:The marbled flounder (Pseudopleuronectes yokohamae) is a commercial flatfish in East Asia. The aim of this study was to improve its sperm cryopreservation protocol based on the vitality assessment of 7-day and 1-year cryopreserved sperm. Four extenders (extender-1: sucrose solution; extender-2: glucose solution; extender-3: fish Ringer's solution; and extender-4: modified fish Ringer's solution) were tested with a combination of five cryoprotectants (CPAs) (dimethyl sulfoxide: Me2SO; glycerol: GLY; ethylene glycol: EG; propylene glycol: PG; and methanol: MeOH) at four different concentrations (5, 10, 12, and 15%). Fluorescent technique was applied to detect the plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), and DNA integrity of fresh and cryopreserved sperm specimens. Fresh sperm was diluted at a ratio of 1:2 (sperm:extender). Post-thaw motility of sperm cryopreserved using 15% Me2SO along with either extender-1 (86.0 ± 5.2%) or extender-2 (85.7 ± 7.1%) was similar (p > 0.05) to that of fresh sperm. Sperm cryopreserved using 12% GLY combined with extender-1 (83.67 ± 6.7%) or extender-2 (83.3 ± 4.7%) showed a similar motility to those cryopreserved with 15% Me2SO, but significantly lower from fresh sperm. The type of straw (0.25 or 0.50 mL) did not show any significant difference (p > 0.05) in post-thaw sperm motility. The highest values of PMI and MMP were observed for 7-day cryopreserved sperm using extender-1 in combination with 15% Me2SO (91.0 ± 2.9% and 90.0 ± 2.0%, respectively) or 12% GLY (90.0 ± 1.3% and 90.0 ± 4.6%, respectively). These results were similar to those of fresh sperm (95.3 ± 2.1% and 92.9 ± 2.5%, respectively). PMI and MMP of 1-year cryopreserved sperm using extender-1 in combination with 15% Me2SO (90.3 ± 2.5% and 89.3 ± 2.1%, respectively) or 12% GLY (90.0 ± 4.4% and 88.7 ± 2.2%, respectively) were significantly similar (p > 0.05) to those of fresh sperm. Sperm DNA integrity did not reveal any significant difference (p > 0.05) between fresh and cryopreserved (7-day and 1-year) sperm. Based on the assessed sperm vitality indicators, a cryopreservation protocol using extender-1 in combination with 15% Me2SO or 12% GLY has potential for hatchery as well as to create a germplasm bank.
Project description:The authors investigated the kinetics of transfer of perfluorooctane sulfonate (PFOS) from water, suspended sediment, and bottom sediment to a marine benthic fish, the marbled flounder (Pseudopleuronectes yokohamae). Fish were exposed in 3 treatments to PFOS in combinations of these exposure media for 28 d and then depurated for 84 d. A major part (37-66%) of PFOS in the fish was in the carcass (i.e., whole body minus muscle and internal organs). Three first-order-kinetic models that differed in exposure media, that is, 1) sum of dissolved and particulate phases and sediment; 2) dissolved phase, particulate phase, and sediment; and 3) dissolved phase only, were fitted to the data assuming common rate constants among the treatments. The uptake efficiency of dissolved PFOS at the respiratory surfaces was estimated to be 3.2% that of oxygen, and the half-life of PFOS in the whole body to be 29 d to 31 d. The better fit of models 1 and 2 and the values of the estimated uptake rate constants suggested that the PFOS in suspended and bottom sediments, in addition to that dissolved in water, contributed to the observed body burden of the fish. Based on an evaluation of several possible contributing factors to the uptake of PFOS from suspended and bottom sediments, the authors propose that further investigation is necessary regarding the mechanisms responsible for the uptake.
Project description:Many known miRNAs in fish come from zebrafish and fugu whose genome sequence data are available. The Japanese flounder undergoes typical metamorphosis which is characterized by major morphological, functional, and behavioral changes during growth due to this metamorphosis from larva to juvenile. Metamorphosis is a biological process by which an animal physically develops after birth or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Here, the high-throughput sequencing was adopted to identify the miRNAs during metamorphosis in the Japanese flounder. We found abundant microRNAs during metamorphosis in the Japanese flounder.
Project description:The 987 probes (Japanese flounder conserved miRNAs and candidates, fish conserved miRNAs, and contro) were hybridized with two stages during Japanese flounder metamorphosis by miRNA microarray. We validated 92 miRNAs using miRNA microarray in the 17 dph and 29 dph of Japanese flounder development, and obtained 66 differertially expressed miRNAs by comparison miRNA expression patterns of the two stages. These results indicate that miRNAs might play key roles in regulating gene expression during Japanese flounder metamorphosis.
Project description:Japanese flounder (Paralichthys olivaceus) is an economic important aquaculture fish that was susceptible to Vibrio anguillarum. To fully deciphered the molecular mechanisms underlying flounder host defense against V. anguillarum infection, we perform the micro-transcriptome analysis of founder spleen with and without V. anguillarum infection at 3 time points.