Project description:Acute myeloid leukemia (AML) is a heterogeneous disease in respect of molecular aberrations and prognosis. We used gene expression profiling of 562 patients treated in the German AMLCG 1999 trial to develop a gene signature that predicts survival in AML. Analysis of 562 samples (140 HGU-133plus2; 422 HGU-133A; 422 HGU-133B) from adult patients with acute myeloid leukemia (AML).
Project description:Acute Myeloid Leukemia (AML) is commonly associated with alterations in transcription factors due to altered expression or gene mutations. These changes might induce leukemia specific patterns of histone modifications. We used ChIP-Chip to analyze histone H3 Lysine 9 trimethylation (H3K9me3) patterns in primary AML (n=108), ALL (n=28), CD34+ cells (n=21) and white blood cells (n=15) specimens. Hundreds of promoter regions in AML showed significant alterations in H3K9me3 levels. H3K9me3 deregulation in AML occurred preferentially as a decrease in H3K9me3 levels at core promoter regions. The altered genomic regions showed an overrepresentation of cis-binding sites for ets and c-AMP response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML specific H3K9me3 patterns were not associated with known cytogenetic abnormalities. But a signature derived from H3K9me3 patterns predicted event free survival in AML patients. Combination of the H3K9me3 signature with established clinical prognostic markers outperformed prognosis prediction based on clinical parameters alone. These findings demonstrate widespread changes of H3K9me3 levels at gene promoters in AML. Signatures of histone modification patterns are associated with patient prognosis in AML.
Project description:Acute myeloid leukemia (AML) is a heterogeneous disease in respect of molecular aberrations and prognosis. We used gene expression profiling of 562 patients treated in the German AMLCG 1999 trial to develop a gene signature that predicts survival in AML.
Project description:The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feed-forward loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, we show that Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.
Project description:The key myeloid transcription factor (TF) CEBPA is frequently mutated in acute myeloid leukemia (AML), but the molecular ramifications of this leukemic driver mutation remain elusive. To investigate CEBPA mutant AML, we compared gene expression changes in human CEBPA mutant AML and in the corresponding CebpaLp30 mouse model, and identified a conserved cross-species transcriptional program. ChIP-seq revealed aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. One leukemic-enhancer upstream of Nt5e, encoding CD73, was physically and functionally linked to this conserved AML gene, and could be activated by CEBPA. Targeting of CD73-adenosine signaling increased AML survival in transplanted mice. Our data indicate a first-in-class link between a TF cancer driver mutation and a druggable, direct transcriptional target.
Project description:We show that the microRNA transcriptome undergoes a global state transition during the initiation and progression of acute myeloid leukemia, and accurately predicts time to disease development.
Project description:Pharmacologic targeting of epigenetic protein complexes has shown significant in vitro responses in acute myeloid leukemia (AML). Early clinical trials in KMT2A-rearranged leukemia indicate rather transient responses and development of resistance. In an effort to define functional dependencies of KMT2A-fusions in AML, we identify the catalytic immunoproteasome subunit PSMB8 as a KMT2A-complex-specific vulnerability. Genetic and pharmacologic inactivation of PSMB8 results in impaired proliferation of murine and human leukemic cells while normal hematopoietic cells remain unaffected. Disruption of immunoproteasome function results in cellular enrichment of transcription factor BASP1, and consecutive repression of KMT2A-target genes. Pharmacologic targeting of PSMB8 improves efficacy of Menin-inhibitors, eradicates leukemia in primary human xenografts and shows preserved activity against Menin-inhibitor resistance mutations. This identifies and validates a cell-intrinsic mechanism whereby selective disruption of proteostasis results in altered transcription factor abundance and repression of oncogene-specific transcriptional networks. Therapeutic targeting of PSMB8-dependent transcription in combination with Menin-inhibition could thus eradicate KMT2A-complex driven AML.