Project description:In this study, we recruited a patient with Hereditary spherocytosis (HS) detected to have a novel heterozygous variant in the SPTB in the proband. Sanger sequencing of variant alleles and haplotype linkage analysis were performed simultaneously. Five embryos were identified with one heterozygous and four not carrying the SPTB variant. Single-cell amplification and whole genome sequencing showed that three embryos had varying degrees of trisomy mosaicism.
2024-09-04 | GSE242733 | GEO
Project description:Identifying pathogenic mutations in hereditary spherocytosis
| PRJNA694794 | ENA
Project description:Hereditary Spherocytosis in Hubei Province of China
Project description:Preimplantation Genetic Testing Analysis for a Chinese Family with Hereditary Spherocytosis Caused by a Novel Splicing Variant of SPTB
Project description:Fumarate hydratase (FH) mutation causes hereditary type 2 papillary renal cell carcinoma (HLRCC, Hereditary Leiomyomatosis and Renal Cell Cancer (MM ID # 605839)). The main effect of FH mutation is fumarate accumulation. The current paradigm posits that the main consequence of fumarate accumulation is HIF-a stabilization. Paradoxically, FH mutation differs from other HIF-a stabilizing mutations, such as VHL and SDH mutations, in its associated tumor types. We identified that fumarate can directly up-regulate antioxidant response element (ARE)-controlled genes. We demonstrated that AKR1B10 is an ARE-controlled gene and is up-regulated upon FH knockdown as well as in FH-null cell lines. AKR1B10 overexpression is also a prominent feature in both hereditary and sporadic PRCC2. This phenotype better explains the similarities between hereditary and sporadic PRCC2. Expression profiling renal normal and tumor tissue
Project description:Fumarate hydratase (FH) mutation causes hereditary type 2 papillary renal cell carcinoma (HLRCC, Hereditary Leiomyomatosis and Renal Cell Cancer (MM ID # 605839)). The main effect of FH mutation is fumarate accumulation. The current paradigm posits that the main consequence of fumarate accumulation is HIF-a stabilization. Paradoxically, FH mutation differs from other HIF-a stabilizing mutations, such as VHL and SDH mutations, in its associated tumor types. We identified that fumarate can directly up-regulate antioxidant response element (ARE)-controlled genes. We demonstrated that AKR1B10 is an ARE-controlled gene and is up-regulated upon FH knockdown as well as in FH-null cell lines. AKR1B10 overexpression is also a prominent feature in both hereditary and sporadic PRCC2. This phenotype better explains the similarities between hereditary and sporadic PRCC2.