Project description:ACSS2-mediated acetylation promotes BCAT1 aggradation to elevate branched-chain amino acid metabolism and development of pancreatic cancer
Project description:Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, exhibits significant metabolic reprogramming. We previously reported elevated HDAC7, a class II histone deacetylase, in ccRCC. Here, we demonstrate that HDAC7 promotes aggressive phenotypes and in vivo tumor progression in RCC. HDAC7 suppresses the expression of genes mediating branched-chain amino acid (BCAA) catabolism. Notably, lower expression of BCAA catabolism genes is strongly associated with worsened survival in ccRCC. Suppression of BCAA catabolism promotes expression of SNAIL1, a central mediator of aggressive phenotypes including migration and invasion. HDAC7-mediated suppression of the BCAA catabolic program promotes SNAI1 mRNA transcription via NOTCH signaling activation. Collectively, our findings provide new insights into the role of metabolic remodeling in ccRCC tumor progression.
Project description:Postoperative insulin resistance refers to the phenomenon that the body’s glucose uptake stimulated by insulin is reduced due to stress effects such as trauma or the inhibitory effect of insulin on liver glucose output is weakened after surgery.
There is a clear link between postoperative insulin resistance and poor perioperative prognosis. Therefore, exploring interventions to reduce postoperative stress insulin resistance, stabilize postoperative blood glucose, and reduce postoperative complications are clinical problems that need to be solved urgently. In recent years, research on branched-chain amino acids and metabolic diseases has become a hot spot. Studies have found that in the rat model, preoperatively given a high branched-chain amino acid diet can inhibit postoperative insulin resistance and stabilize blood glucose levels. This research plan is to try to add branched-chain amino acids before surgery to observe the occurrence of postoperative insulin resistance in patients.
Project description:Development, growth and adult survival are coordinated with available metabolic resources. The insulin/IGF and TOR signaling pathways relay nutritional status, thereby ascertaining that the organism responds appropriately to environmental conditions. MicroRNAs are short (21-23 nt) regulatory RNAs that confer specificity on the RNA-induced silencing complex (RISC) to inhibit a given set of mRNA targets. We profiled changes in miRNA expression during adult life in Drosophila melanogaster and determined that miR-277 is down-regulated with age. This miRNA controls branched-chain amino acid (BCAA) catabolism and the activity of the TOR kinase, a central growth regulator. Metabolite analysis suggests that the mechanistic basis may be an accumulation of BCKAs, rather than BCAAs, thus avoiding potentially detrimental consequences of increased branched chain amino acid levels on e.g. translational fidelity. Constitutive miR-277 expression as well as transgenic inhibition with a miRNA sponge construct shortens lifespan. Furthermore, constitutive miR-277 expression is synthetically lethal with reduced insulin signaling. Thus, optimal metabolic adaptation requires tuning of cellular BCAA catabolism by miR-277 to be concordant with systemic growth signaling.