Project description:In the present work we compare the gene expression profile of A. baumannii and a mutant knock-out strain of A. baumannii lacking a small RNA gene 13573 and the corresponding small RNA 13573 over-producing strain. The main objective is to recognize the main pathways in which the small RNA 13573 is involved. Moreover, the same wild type strain was used to infect mice and was further analyzed after the infection with the aim of finding genes differentially expressed in vivo. Three biological replicates have been performed for each comparison. The RNA collection from Acinetobacter baumannii strain over-expresing the small RNA (sample 13573) was compared with this isolated from A. baumannii harboring the empty vector (PETRA sample) while gene expression in the knock-out strain (KO sample) was compared with the wild type strain Acinetobacter baumannii ATCC 17978 (ATCC sample). The RNA from A.baumannii recovered from the infected animals (INF sample) was compared with the wild type (ATCC).
Project description:Two Acinetobacter baumannii strains with low susceptibility to fosmidomycin and two reference with high susceptibility to fosmidomycin were DNA-sequenced to investigate the genomic determinants of fosmidomycin resistance.
Project description:Difference in RNA expression levels between Acinetobacter baumannii cells expressing high and low levels of cyclic AMP Total RNA obtained from Acineotbacter baumannii bacterial cells in Log phase gown in MH broth culture, isolated RNA in triplicate from three expreiment. cpdA::Tn mutant and 17978hm strain compared. Assessing increased levels of cAMP within the cell
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:Acinetobacter baumannii causes high mortality in ventilator-associated pneumonia patients and antibiotic treatment is compromised in multi-drug resistant strains resistant to beta-lactams, carbapenems, cephalosporins, polymyxins and tetracyclines. Among COVID-19 patients receiving ventilator support, multi-drug resistant A. baumannii secondary infection is associated with a two-fold increase in mortality. Here we investigated the use of the 8-hydroxyquinoline ionophore PBT2 to break resistance of A. baumannii to tetracycline class antibiotics.