Project description:Black soldier fly larvae meal (BSFL) from Hermetia illucens is a promising alternative protein source in diets for farmed fish. The larvae can efficiently convert low-value organic material into high quality protein in a production cycle with low arable land and freshwater inputs. A few recent studies have shown that BSFL is a suitable protein source for Atlantic salmon (Salmo salar) in smaller controlled experiments. However, industry-relevant field trials conducted under large scale near-commercial conditions over a longer period are lacking. In this study, a feeding trial was performed to evaluate the impact of BSFL on growth performance and health of Atlantic salmon during the grow out phase in seawater, in a commercial site in Vestland county, Norway. A total of 320,000 post-smolt Atlantic salmon were distributed into six duplicate sea cages and fed one of three diets (commercial-like control diet and two test diets partially replacing the protein content of the control diet with 4 % and 8 % defatted BSFL meal) for 21 weeks, until a relevant commercial slaughter size of 4.5-5.0 kg was reached. Health parameters were assessed including histology of the distal intestine (DI), in addition to DI microbiota identification (by 16s rRNA-seq) and salmon RNA-seq of DI and head kidney (HK). The results showed that the inclusion of BSFL meal supported growth performance and had no adverse effect on gut health. The beta diversity of the distal intestine microbiota and the relative abundance of families Lactobacillaceae and the chitinolytic Bacillaceae increased in the fish fed the BSFL diets. Additionally, no histopathological changes were attributable to BSFL meal intake. Results from RNA-seq in DI revealed that BSFL inclusion modulates metabolic processes associated with lipids, the response to estrogens, the activity of immune receptors (to chemokines), phagocytosis and extracellular vesicles. Based on these results, black soldier fly larvae meal is a suitable alternative protein ingredient in inclusions of up to at least 8 % for Atlantic salmon under industrial fish farming conditions.
Project description:Cupriavidus metallidurans CH34 is a metal resistant beta-proteobacterium. The genome of this bacterium contain many genes involved in heavy metal resistance. Gene expression of C. metallidurans was studied after the addition of of Zn(II), Cd(II), Cu(II), Ni(II), Pb(II), Hg(II) or Co(II). Keywords: Heavy metal stress response
Project description:Contamination of food products with mycotoxins such as aflatoxin B1 (AFB1) poses a severe risk to human health. Larvae of the black soldier fly (BSFL), Hermetia illucens (Diptera: Stratiomyidae), can successfully metabolize AFB1 without any negative consequences on their survival or growth. However, the underlying mechanisms that allow BSFL to metabolize AFB1 are unknown. In this study, five-day-old BSFL were fed with either a control or an AFB1-spiked (20 µg/kg) diet to elucidate the underlying mechanisms. Larval samples were collected at three timepoints (6 h, 24 h, and 72 h) and subjected to RNA-Seq analysis to determine gene expression patterns. Provision of an AFB1-spiked diet resulted in an up-regulation of 357 and a down-regulation of 929 unique genes. Upregulated genes include multiple genes involved in AFB1 metabolism in other (insect) species. Downregulated genes were generally involved in the insects' growth, development, and immunity. BSFL possesses a diverse genetic arsenal that encodes for enzymes capable of metabolizing AFB1 without trade-offs on larval survival.
Project description:The present study was conducted to investigate the effect of graded levels of black soldier fly larvae (BSFL) (Hermetia illucens) meal and BSFL paste in extruded diets for Atlantic salmon (Salmo salar). A total of 1260 Atlantic salmon with 34 g of mean initial weight were randomly distributed into 21 fiberglass tanks and fed (n=3) with seven extruded isolipidic and isonitrogenous diets for seven weeks. The experimental diets consisted of a positive control diet based on fishmeal, soy protein concentrate, corn gluten, faba bean and fish oil (Control_1); three diets with increased levels of full lipid BSFL meal, substituting 6.25% (6.25_IM), 12.5% (12.5_IM) and 25% (25_IM) of the protein content of Control_1; two diets with increased levels of full lipid BSFL paste, substituting 3.7% (3.7_IP) and 6.7% (6.7_IP); and of protein from Control_1 and a negative a control with 0.84 % of formic acid (Control_2). We investigate the effect of diets on growth performance, mmune response and health.
Project description:Cupriavidus metallidurans CH34 is a metal resistant beta-proteobacterium. The genome of this bacterium contain many genes involved in heavy metal resistance. Gene expression of C. metallidurans was studied after the addition of of Zn(II), Cd(II), Cu(II), Ni(II), Pb(II), Hg(II) or Co(II). Keywords: Heavy metal stress response Cultures of C. metallidurans CH34 were grown at 30°C until OD reached 0.6 (mid- exponential phase cultures). Heavy metals (0.8 mM of Zn(II), 0.5 mM of Cd(II), 0.1 mM of Cu(II), 0.6 mM of Ni(II), 0.4 mM of Pb(II), 5 uM of Hg(II) and 0.5 mM of Co(II)) were added to the culture for 30 minutes induction time. Total RNA was extracted, reverse-transcribed and labeled with Cy3-dCTP for the control (without metal) and with Cy5-dCTP for each conditions (challenged with one metal). Labeled cDNA were (control and one condition) added to a spotted slide for overnight hybridization at 42°C. Slides were scanned with a laser at 532 and 635 nm.
Project description:Our main objective was to study the changes in cDNA microarray gene expression profiles of A. thaliana plants exposed to different doses of a polymetallic solution containing Pb (II), Hg (II), Cu (II), Cd (II), Co (II), Ni (II), Zn (II) and Mn (II) over 3 hours. Control plants grown in the absence of metals were also included in the experiment.
Project description:From the results of gene expression analyses of HepG2 under the exposure of 2,3-Dimethoxy-1,4-naphthoquinone (DMNQ), N-nitrosodimethylamine (DMN), phenol and six heavy metals We showed that biological action of six heavy metals were clearly related to that of DMNQ and distinguishable from the other chemicals. These results suggest that oxidative stress is major apparent biological action of high dose heavy metals, supporting the previous reports. Experiment Overall Design: Using Affymetrix HG-Focus arrays, we compared the gene expression patterns of Hep G2 cells induced by six heavy metals (As, Cd, Ni, Sb, Hg or Cr) with that of DMNQ, DMN or phenol, and evaluated the toxicities of these heavy metals.