Project description:The emergence and spread of polymyxin resistance, especially among Klebsiella pneumoniae isolates threaten the effective management of infections. This study profiled for polymyxin resistance mechanisms and investigated the activity of polymyxins plus vancomycin against carbapenem- and polymyxin-resistant K. pneumoniae.
Project description:The emergence of colistin resistance in carbapenem-resistant and extended-spectrum ß-lactamase (ESBL)-producing bacteria is a significant threat to human health, and new treatment strategies are urgently required. Here we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in several polymyxin-resistant, ESBL-producing, carbapenem resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including a ‘next generation’ polymyxin derivative, FADDI-287. To gain additional insight into the potential mechanism of action of PBT2, we analyzed the transcriptome of K. pneumoniae and E. coli in the presence of sub-inhibitory concentrations of PBT2. Treatment with PBT2 was associated with multiple stress responses in both K. pneumoniae and E. coli. Significant changes in the transcription of transition metal ion homeostasis genes were observed in both strains.
Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:To investigate the role of outer membrane vesicles (OMVs) and related proteins in iron acquisition mechanism of hypervirulent Klebsiella pneumoniae (HVKP) and classic Klebsiella pneumoniae (cKP).
Project description:Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a major global health threat, particularly in healthcare-associated infections. While carbapenemase- and porin-centered mechanisms are well characterized, how subinhibitory carbapenem exposure selects noncanonical adaptive routes remains unclear. Here, we show that subinhibitory meropenem promotes O_x001E_antigen loss in K. pneumoniae, predominantly mediated by insertion sequences (IS), thereby enhancing carbapenem resistance. O_x001E_antigen deficiency rewires metabolism under meropenem pressure, especially glycine, serine, and threonine pathways, dampening reactive oxygen species (ROS) accumulation and limiting oxidative killing; exogenous glycine restores ROS production and meropenem susceptibility. Genomic surveys reveal widespread O_x001E_antigen loss in K. pneumoniae, largely driven by IS, and also in Escherichia coli, and O_x001E_antigen–deficient mutants confirm its role in promoting carbapenem resistance. Importantly, this adaptation entails a trade-off: it improves survival under carbapenem pressure but increases serum susceptibility, destabilizes the capsule, attenuates virulence in murine infection models, and confers collateral sensitivity to aminoglycosides. These findings uncover a previously unrecognized route to carbapenem resistance that links O_x001E_antigen remodeling to metabolic rewiring, offering conceptual and therapeutic leverage points.
Project description:The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum -lactamase (ESBL)-producing bacteria is a critical threat to human health, and new treatment strategies are urgently required. Here, we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less-toxic next-generation polymyxin derivative, FADDI-287. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + FADDI-287 in vivo for the treatment of Gram-negative sepsis. These data present a new treatment modality to break antibiotic resistance in high priority polymyxin-resistant Gram-negative pathogens.
2020-07-01 | GSE153553 | GEO
Project description:Diversity of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in China
Project description:Klebsiella pneumoniae is a prominent human pathogen that has developed resistance to multiple antibiotics. While the roles of capsules and siderophores are well established, the identification of additional virulence determinants remains limited. In this study, we hypothesize that the two-component system response regulator CpxR is integral to the regulation of K. pneumoniae virulence via control of specific virulence-associated genes. Deletion of the cpxR gene resulted in reduced serum resistance and attenuated virulence in both Galleria mellonella larvae and murine infection models compared to the wild-type strain. To elucidate the repertoire of virulence-associated genes regulated by CpxR, a multidisciplinary workflow was employed, integrating RNA sequencing, Real-Time quantitative PCR, gene knockout strategies, serum resistance assays, and infection experiments utilizing Galleria mellonella. Among the genes identified with significantly diminished expression following cpxR deletion, KPHS_28080 emerged as a novel candidate virulence-associated gene. Deletion of KPHS_28080 impaired serum survival in both the carbapenem-resistant CRKp HS11286 and the hypervirulent hvKp ATCC43816 strains. Furthermore, deletion of KPHS_28080 in hvKp ATCC43816 led to significantly decreased colonization and impaired dissemination to multiple organs in murine models, corresponding with an overall reduction in virulence. The promoter region of KPHS_28080 harbors a conserved CpxR binding motif, which enhances promoter activity and gene transcription upon CpxR binding. Sequence alignment revealed that KPHS_28080 encodes a member of the short-chain dehydrogenase family, and this gene is highly conserved among K. pneumoniae strains. These results elucidate the pivotal role of CpxR in mediating virulence in K. pneumoniae and clarify its regulatory impact on virulence-associated gene expression.