Project description:We addressed the question how the interaction between the beneficial root endophyte Serendipita vermifera (Sv) and the pathogen Bipolaris sorokiniana (Bs) affects fungal behavior and determines barley host responses using a gnotobiotic natural soil-based split-root system for phenotypic and transcriptional analyses.
Project description:<p>Drought stress negatively impacts microbial activity, but the magnitude of stress responses are likely dependent on a diversity of below ground interactions. Populus trichocarpa individuals and no plant bulk soils were exposed to extended drought (~0.03% gravimetric water content (GWC) after 12d), re-wet, and a 12-d 'recovery' period to determine the effects of plant presence in mediating soil microbiome stability to water stress. Plant metabolomic analyses indicated that drought exposure increased host investment in C and N metabolic pathways (amino acids, fatty-acids, phenolic glycosides) regardless of recovery. Several metabolites positively correlated with root-associated microbial alpha diversity, but not those of soil communities. Soil bacterial community composition shifted with P. trichocarpa presence and with drought relative to irrigated controls, whereas soil fungal composition only shifted with plant presence. However, root fungal communities strongly shifted with drought, whereas root bacterial communities changed to a lesser degree. The proportion of bacterial water-stress opportunistic OTUs (enriched counts in drought) were high (~11%) at the end of drying phases, and maintained after re-wet, and recovery phases in bulk soils, but declined over time in soils with plants present. For root fungi opportunistic OTUs were high at the end of recovery in drought treatments (~17% abundance), although relatively not responsive in soils, particularly planted soils (< 0.5% abundance for sensitive or opportunistic). These data indicate that plants modulate soil and root associated microbial drought responses via tight plant-microbe linkages during extreme drought scenarios, but trajectories after extreme drought vary with plant habitat and microbial functional groups.</p>
Project description:The presence of genetic groups of the entomopathogenic fungus Metarhizium anisopliae in soil is shaped by its adaptability to specific soil and habitat types, and by soil insect populations. Although the entomopathogenic life style of this fungus is well studied, its saprophytic life style has received little consideration. While a set of functionally related genes can be commonly expressed for the adaptability of this fungus to different environments (insect cuticle, insect blood and root exudates), a different subset of genes is also expected for each environment. In order to increase the knowledge of the potential use of M. anisopliae as a rhizosphere competent organism, in this study we evaluated the genetic expression of this fungus while growing on plant root exudates in laboratory conditions during a time course. One fungal strain: Metarhizium anisopliae ARSEF 2575; Five time conditions: 0h, 1h, 4h, 8h, 12h; Five-condition experiment: Time0h vs. Time1h, Time1h vs. Time4h, Time4h vs. Time8h, Time8h vs. Time12h and Time12h vs. Time0h. Two Biological replicates: independently grown and harvested. Three replicates per array. Dye-swap was performed on replicate 2.
Project description:Permafrost soil in high latitude tundra is one of the largest terrestrial carbon (C) stocks and is highly sensitive to climate warming. Understanding microbial responses to warming induced environmental changes is critical to evaluating their influence on soil biogeochemical cycles. In this study, a functional gene array (i.e. GeoChip 4.2) was used to analyze the functional capacities of soil microbial communities collected from a naturally degrading permafrost region in Central Alaska. Varied thaw history was reported to be the main driver of soil and plant differences across a gradient of minimally, moderately and extensively thawed sites. Compared with the minimally thawed site, the number of detected functional gene probes across the 15-65 cm depth profile at the moderately and extensively thawed sites decreased by 25 % and 5 %, while the community functional gene beta-diversity increased by 34% and 45%, respectively, revealing decreased functional gene richness but increased community heterogeneity along the thaw progression. Particularly, the moderately thawed site contained microbial communities with the highest abundances of many genes involved in prokaryotic C degradation, ammonification, and nitrification processes, but lower abundances of fungal C decomposition and anaerobic-related genes. Significant correlations were observed between functional gene abundance and vascular plant primary productivity, suggesting that plant growth and species composition could be co-evolving traits together with microbial community composition. Altogether, this study reveals the complex responses of microbial functional potentials to thaw related soil and plant changes, and provides information on potential microbially mediated biogeochemical cycles in tundra ecosystems.
Project description:Purpose: The recent publication of the fungal mutualist R. irregularis genome facilitated transcriptomic studies. We here adress the gene regulation of R. irregularis in response to plant signals in the switch from asymbiotic to presymbiotic growth Methods: Spores of R. irregularis were treated with GR24 (strigolactone synthetic analog) and collected at 1 hour, 2 days, 7 days and 14 days after induction. To stimulate the fungus with root exudates, a cellophane membrane allowing molecule exchanges was deposited on in vitro Daucus carotta roots. Spores were spotted on this membrane and collected 14 days after. To monitor fungal gene regulation, control conditions were also prepared and mRNA were sequenced by HiSeq Illumina. Read were mapped on the genome assembly with CLCworkbench Results: At 1 hour, GR24 triggered the overexpression (fold change >2; FDR<0,05) of 123 genes and the repression (fold change < -2; FDR<0,05) of 17 genes. At 2 days, 33 genes were induced, 13 repressed ; at 7 days 106 genes were induced and 13 repressed and at 14 days 19 genes were induced and 10 repressed. Few genes overlap between the different time point. Root exudates induced 251 genes and repressed 63 genes. Few genes were regulated by both GR24 and root exudates. Conclusions: GR24 kinetic showed that fungal gene regulation is sequential, quick and involves hundreds of genes. Among those genes, a chitin synthase, involved either in fungal growth either in symbiotic signal production was strongly induced at 1hour, 7 days and 14 days. As few genes are regulated in response to root exudates and GR24, we propose that other plant signals play a role in ealy steps and trigger fungal gene regulation. Several genes coding for putative secreted peptides were induced in response to these plant signals. These genes might be effectors involved in early plant defense manipulation, then facilitating root entry. Thus, they are good candidates to investigate early steps of plant penetration.
Project description:Plants are naturally associated with diverse microbial communities, which play significant roles in plant performance, such as growth promotion or fending off pathogens. The roots of Alkanna tinctoria L. are rich in naphthoquinones, particularly the medicinally used chiral compounds alkannin, shikonin and their derivatives. Former studies already have shown that microorganisms may modulate plant metabolism. To further investigate the potential interaction between A. tinctoria and associated microorganisms we performed a greenhouse experiment, in which A. tinctoria plants were grown in the presence of three distinct soil microbiomes. At four defined plant developmental stages we made an in-depth assessment of bacterial and fungal root-associated microbiomes as well as all primary and secondary metabolites. Our results showed that the plant developmental stage was the most important driver influencing the plant metabolite content, revealing peak contents of alkannin/shikonin at the fruiting stage. In contrast, the soil microbiome had the biggest impact on the plant root microbiome. Correlation analyses performed on the measured metabolite content and the abundance of individual bacterial and fungal taxa suggested a dynamic, at times positive or negative relationship between root-associated microorganisms and root metabolism. In particular, the bacterial Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium group and the fungal species Penicillium jensenii were found to be positively correlated with higher content of alkannins.