Project description:The common Eastern bumble bee Bombus impatiens is native to North America and is the main commercially reared pollinator in the Americas. There has been extensive research on this species related to its social biology, applied pollination, and genetics. The genome of this species was previously sequenced using short-read technology, but recent technological advances provide an opportunity for substantial improvements. This species is common in agricultural and urban environments, and heavy metal contaminants produced by industrial processes can negatively impact it. To begin to identify possible mechanisms underlying responses to these toxins, we used RNA-sequencing to examine how exposure to a cocktail of four heavy metals at field-realistic levels from industrial areas affected B. impatiens worker gene expression.
Project description:Heavy metals residue in the natural ecosystem had become one global environmental problem that was eager to solve. Due to the non-biodegradability, organism could deposit excessive heavy metals elements into tissues. Existing literature proposed that prolonged heavy metals enrichment had comprehensive toxicity to multi-organs of vertebrates. However, little research focus on the molecular mechanism for the hepatotoxicity of heavy metal enrichment to Chiroptera. In the present study, ten Hipposideros armiger individuals from Yingde City (YD, relatively pollution-free) and Chunwan City (CW, excessive heavy metals emission) were dissected while environment samples were also obtained. To corroborate the toxicity mechanism of heavy metals to bats liver, multi-omics, pathology and molecular biology methods were performed. Our results showed that more Cd and Pb elements were significantly enriched in bats liver and food sources in the CW group. In addition, prolonged heavy metals accumulation disturbed the hepatic transcription profiling associated with solute carriers family, ribosome pathway, ATP usage and heat shock proteins. Excessive heavy metals enrichment also altered the relative abundance of typical gut microbe taxa to inhibit the tight-junction protein expression. We also found that the levels of superoxide dismutase, glutathione peroxidase and glutathione were decreased while ROS density and malondialdehyde content were elevated after excessive heavy metals enrichment. Besides, hepatic fat accumulation and inflammation injury were also observed under the excessive heavy metals enrichment while the metabolism biomarkers contents were decreased. Therefore, prolonged heavy metals enrichment would induce a series of hepatotoxicity by disturbing the microbes-gut-liver axis and hepatic transcription modes, which could decrease the overall metabolism level in bats. Our study provided protection strategy for biodiversity conservation and raised public attention to environment pollution.
Project description:From the results of gene expression analyses of HepG2 under the exposure of 2,3-Dimethoxy-1,4-naphthoquinone (DMNQ), N-nitrosodimethylamine (DMN), phenol and six heavy metals We showed that biological action of six heavy metals were clearly related to that of DMNQ and distinguishable from the other chemicals. These results suggest that oxidative stress is major apparent biological action of high dose heavy metals, supporting the previous reports. Experiment Overall Design: Using Affymetrix HG-Focus arrays, we compared the gene expression patterns of Hep G2 cells induced by six heavy metals (As, Cd, Ni, Sb, Hg or Cr) with that of DMNQ, DMN or phenol, and evaluated the toxicities of these heavy metals.
Project description:From the results of gene expression analyses of HepG2 under the exposure of 2,3-Dimethoxy-1,4-naphthoquinone (DMNQ), N-nitrosodimethylamine (DMN), phenol and six heavy metals We showed that biological action of six heavy metals were clearly related to that of DMNQ and distinguishable from the other chemicals. These results suggest that oxidative stress is major apparent biological action of high dose heavy metals, supporting the previous reports. Keywords: other
Project description:Cadmium is one of the widely used Heavy metals in commercial and industrial products and contributes to environmental contamination in urban settings. Heavy metal toxicity comes with a fitness cost to insects. Here we investigated the proteome of the malaria mosquito An. gambiae lava after multigenerational exposure to cadmium at physiologically relevant concentrations and observed the disregulation of larval immunity, energy metabolism, antioxidant enzymes among other biological processes.
Project description:We hypothesize that microarray-based analysis of Lycopersicon esculentum is a sensitive tool for the early detection of potential toxicity of heavy metals, as well as an effective tool for identifying the heavy metal-specific genes. To test the hypothesis, the Agilent whole-genome cDNA microarrays were used to assess the effects of heavy metal on L. esculentum at relatively low concentrations (1/10 LC50 of heavy metals). Results showed that the characteristic gene expression profiles induced by Cd, Cr, Hg and Pb were not only distinct from the control but also distinct from one another, demonstrating the feasibility of discriminating between the effects of these four heavy metals present at relatively low concentrations. Moreover, heavy metal-specific genes were identified by microarray analysis. These findings support the above hypothesis.
Project description:Many veterans live with military grade heavy metal fragments retained in soft tissue. Retained heavy metal fragments may negatively impact health in various organ systems and can manifest as gastrointestinal, neurocognitive, pulmonary and renal disturbances. As such, a better understanding of the long-term effects of retained metals and identification of biomarkers indicative of detrimental health outcomes would benefit clinical decision making. In this study, we analyzed serum microRNAs from rats with military-relevant pure metals implanted in the gastrocnemius muscle for 1, 3, 6, and 12 months in order to identify potential microRNA biomarkers that are indicative of exposure to one or more metals.