Project description:HELLS is a known chromatin remodeler, but its specific genomic targets have not been sufficiently described. Here, we report the generation of HELLS knockout human pluripotent cells and through telomere-to-telomere mapping of whole genome bisulfite sequencing data combined with ATAC-sequencing, we discovered a striking loss of DNA methylation over inaccessible, satellite repeats. Our study further clarifies the role of HELLS and provides insights into functional consequences through its deregulation in diseases.
Project description:DNA methylation is essential for genome integrity and involves multi-layered chromatin interac-tions that require remodeling proteins like the Helicase, Lymphoid-specific (HELLS). Here, we generate HELLS and de novo DNA methyltransferase 3 A and B (DNMT3A/B) knockout human pluripotent stem cells and assemble telomere-to-telomere maps of whole genome bisulfite se-quencing data combined with ATAC-sequencing. Disrupting HELLS induces a global loss of DNA methylation that is distinct from the de novo DNMTs, in particular over peri/centromeric satellite repeats as defined in the telomere-to-telomere genome assembly. However, HELLS is dispen-sable for local enhancer remodeling and the potential to differentiate into the three germ layers. Taken together, these findings further clarify the genomic targets and role of HELLS in human cells.
Project description:interactions that require remodeling proteins like the Helicase, Lymphoid-specific (HELLS). Here, we generate HELLS and de novo DNA methyltransferase 3 A and B (DNMT3A/B) knockout hu-man pluripotent stem cells and assemble telomere-to-telomere maps of whole genome bisulfite sequencing data combined with ATAC-sequencing. Disrupting HELLS induces a global loss of DNA methylation that is distinct from the de novo DNMTs, in particular over peri/centromeric satellite repeats as defined in the telomere-to-telomere genome assembly. However, HELLS is dispensable for local enhancer remodeling and the potential to differentiate into the three germ layers. Taken together, these findings further clarify the genomic targets and role of HELLS in human cells.
Project description:In vertebrates, DNA methylation predominantly occurs at CG dinucleotides however, widespread non-CG methylation (mCH) has been reported in mammalian embryonic stem cells and in the brain. In mammals, mCH is found at CAC trinucleotides in the nervous system, where it is associated with transcriptional repression, and at CAG trinucleotides in embryonic stem cells, where it positively correlates with transcription. Moreover, CAC methylation appears to be a conserved feature of adult vertebrate brains. Unlike any of those methylation signatures, here we describe a novel form of mCH that occurs in the TGCT context within zebrafish mosaic satellite repeats. TGCT methylation is inherited from both male and female gametes, remodelled during mid-blastula transition, and re-established during gastrulation in all embryonic layers. Moreover, we identify DNA methyltransferase 3ba (Dnmt3ba) as the primary enzyme responsible for the deposition of this mCH mark. Finally, we observe that TGCT-methylated repeats are specifically associated with H3K9me3-marked heterochromatin suggestive of a functional interplay between these two gene-regulatory marks. Altogether, this work provides insight into a novel form of vertebrate mCH and highlights the substrate diversity of vertebrate DNA methyltransferases.
Project description:The chromatin-remodeling enzyme helicase lymphoid-specific (HELLS) interacts with cell division cycle-associated 7 (CDCA7) on nucleosomes and is involved in the regulation of DNA methylation in higher organisms. Mutations in these genes cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, which also results in DNA hypomethylation of satellite repeat regions. We investigated the functional domains of human CDCA7 in HELLS using several mutant CDCA7 proteins. The central region is critical for binding to HELLS, activation of ATPase, and nucleosome sliding activities of HELLS-CDCA7. The N-terminal region tends to inhibit ATPase activity. The C-terminal 4CXXC-type zinc finger domain contributes to CpG and hemimethylated CpG DNA preference for DNA-dependent HELLS-CDCA7 ATPase activity. Furthermore, CDCA7 showed a binding preference to DNA containing hemimethylated CpG, and replication-dependent pericentromeric heterochromatin foci formation of CDCA7 with HELLS was observed in mouse embryonic stem cells; however, all these phenotypes were lost in the case of an ICF syndrome mutant of CDCA7 mutated in the zinc finger domain. Thus, CDCA7 most likely plays a role in the recruitment of HELLS, activates its chromatin remodeling function, and efficiently induces DNA methylation, especially at hemimethylated replication sites.
Project description:We are interested in deciphering the mechanism by which DNA methylation in late B cell differentiation affects humoral immune response. We were using enzymatic-methyl sequencing (EM-seq) and chose to study a very rare immunodeficiency called ICF type 4, where a point mutation in a gene encoding the protein HELLS causes a lack of both circulating antibodies and memory B cells in human. HELLS is a chromatin remodeler, that allows for DNA methylation to occur.