Project description:The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells.
Project description:we mapped the locations of DNA segments occupied by GATA1 using chromatin immunoprecipitation (ChIP). We have produced genome-wide GATA1 ChIP datasets after restoration and activation in G1E-ER4 cells. we employed the sequence census methodology of ChIP-seq , using Illumina GA2 technology to produce 23 million reads (36 nucleotides long) uniquely mapped to the mouse genome (mm8 assembly) for the GATA1 ChIP DNA and 15 million mapped reads for the input DNA Examination of transcription factor GATA1 occupancy