Project description:We used 2', 3'-cyclic phosphate cDNA synthesis and Illumina sequencing to identify and endoribonuclease cleavage sites in host and viral RNAs during HCV infection of Huh7.5.1 cells
Project description:This project enriched and identified phosphoproteins in human hepatocarcinoma 7.5.1 cell line (Huh7.5.1) upon Hepatitis C virus (HCV) infection.
Project description:Chronic hepatitis B, C and D virus (HBV, HCV, HDV) infections are leading causes of liver disease and cancer worldwide. Although these viruses differ markedly in their life cycle and genomic organization, they exclusively infect hepatocytes. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) was identified as the first functional receptor for HBV and HDV. Here, we report that NTCP also facilitates HCV entry into human hepatocytes, by augmenting the bile acid-mediated repression of IFN-stimulated genes (ISGs), including IFITM2 and IFITM3, to increase the susceptibility of cells to HCV entry. Furthermore, an HBV-derived preS1 peptide, known to bind NTCP and to inhibit bile acid uptake and HBV infection, inhibits HCV entry by enhancing the expression of ISGs. Our study highlights NTCP as a novel player linking bile acid metabolism to the interferon response in hepatocytes and establishes a role for NTCP in the entry process of multiple hepatotropic viruses, via distinct mechanisms. Collectively, these findings enhance our understanding of hepatitis virus-host interactions and suggest NTCP as an attractive antiviral target for HBV/HCV co-infection. Transcriptome profiling by DNA microarray of Huh7.5.1 cells transduced to express NTCP.
Project description:To further elucidate the gene expression profile alterations induced by HCV infection, we have employed the Arraystar Human LncRNA Microarray V3.0 as a discovery platform to identify genes associated with HCV infection. Human hepatocellular carcinoma cell line Huh7.5.1 was infected with HCVcc for 6 h. The gene expression pattern of HCVcc-infected Huh7.5.1 was compared with that of uninfected Huh7.5.1 to identify the differentially expressed genes induced by HCV infection.
Project description:The combination of peginterferon and ribavirin is the standard treatment for chronic hepatitis C. Our recent clinical study suggests that ribavirin augments the induction of interferon stimulated genes (ISGs) in patients treated for HCV infection [1]. In order to further characterize the mechanisms of action of ribavirin, we examined the effect of ribavirin treatment on ISG induction in cell culture. In addition, the effect of ribavirin on infectious HCV cell culture systems was also studied. Similar to interferon-alpha, ribavirin potently inhibits JFH-1 infection of Huh7.5.1 cells in a dose-dependent manner, which spans the physiological concentration of ribavirin in vivo. Microarray analysis and subsequent quantitative PCR assays demonstrated that ribavirin treatment resulted in the induction of a distinct set of ISGs. These ISGs, including IRF7 and IRF9 are known to play an important role in anti-HCV responses. When ribavirin is used in conjunction with interferon, induction of specific ISGs is synergistic when compared to either drug applied separately. Direct up-regulation of these antiviral genes by ribavirin is mediated by a novel mechanism different from those associated with interferon signaling and intracellular double stranded RNA sensing pathways such as RIG-I and MDA5. RNA interference studies excluded the activation of the Toll-like receptor and NF-KappaB pathways in the action of ribavirin. In conclusion, our study suggests that ribavirin, acting via a novel innate mechanism, potentiates the anti-HCV effect of interferon. Understanding the mechanism of action of ribavirin would be valuable in identifying novel antivirals.
Project description:The combination of peginterferon and ribavirin is the standard treatment for chronic hepatitis C. Our recent clinical study suggests that ribavirin augments the induction of interferon stimulated genes (ISGs) in patients treated for HCV infection [1]. In order to further characterize the mechanisms of action of ribavirin, we examined the effect of ribavirin treatment on ISG induction in cell culture. In addition, the effect of ribavirin on infectious HCV cell culture systems was also studied. Similar to interferon-alpha, ribavirin potently inhibits JFH-1 infection of Huh7.5.1 cells in a dose-dependent manner, which spans the physiological concentration of ribavirin in vivo. Microarray analysis and subsequent quantitative PCR assays demonstrated that ribavirin treatment resulted in the induction of a distinct set of ISGs. These ISGs, including IRF7 and IRF9 are known to play an important role in anti-HCV responses. When ribavirin is used in conjunction with interferon, induction of specific ISGs is synergistic when compared to either drug applied separately. Direct up-regulation of these antiviral genes by ribavirin is mediated by a novel mechanism different from those associated with interferon signaling and intracellular double stranded RNA sensing pathways such as RIG-I and MDA5. RNA interference studies excluded the activation of the Toll-like receptor and NF-KappaB pathways in the action of ribavirin. In conclusion, our study suggests that ribavirin, acting via a novel innate mechanism, potentiates the anti-HCV effect of interferon. Understanding the mechanism of action of ribavirin would be valuable in identifying novel antivirals. RNA from three samples were treated with Ribavirin and compared to three PBS treated samples
Project description:Host cells harbor various intrinsic mechanisms to restrict viral infections as a first line of antiviral defense. Viruses have evolved various countermeasures against these antiviral mechanisms. Here we show that N-Myc Downstream-Reguated Gene 1 (NDRG1) limits productive HCV infection by inhibiting viral assembly. Interestingly, HCV infection down-regulates NDRG1 protein and mRNA expression. Loss of NDRG1 increases the size and number of lipid droplets, which are the sites of HCV assembly. HCV suppresses NDRG1 expression by up-regulating MYC, which directly inhibits the transcription of NDRG1. Up-regulation of MYC also leads to reduced expression of NDRG1-specific kinase SGK1, resulting in markedly diminished phosphorylation of NDRG1. Knockdown of MYC during HCV infection rescues NDRG1 expression and phosphorylation, suggesting that MYC regulates NDRG1 at both transcriptional and post-translational levels. Overall, our results suggest that NDRG1 restricts HCV assembly by limiting lipid droplet formation. HCV counteracts this intrinsic antiviral mechanism by down-regulating NDRG1 via a MYC-dependent mechanism.
Project description:Chronic hepatitis B, C and D virus (HBV, HCV, HDV) infections are leading causes of liver disease and cancer worldwide. Although these viruses differ markedly in their life cycle and genomic organization, they exclusively infect hepatocytes. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) was identified as the first functional receptor for HBV and HDV. Here, we report that NTCP also facilitates HCV entry into human hepatocytes, by augmenting the bile acid-mediated repression of IFN-stimulated genes (ISGs), including IFITM2 and IFITM3, to increase the susceptibility of cells to HCV entry. Furthermore, an HBV-derived preS1 peptide, known to bind NTCP and to inhibit bile acid uptake and HBV infection, inhibits HCV entry by enhancing the expression of ISGs. Our study highlights NTCP as a novel player linking bile acid metabolism to the interferon response in hepatocytes and establishes a role for NTCP in the entry process of multiple hepatotropic viruses, via distinct mechanisms. Collectively, these findings enhance our understanding of hepatitis virus-host interactions and suggest NTCP as an attractive antiviral target for HBV/HCV co-infection.
Project description:Huh-7.5.1 cells were treated with 0.2% DMSO, 20 microM NeoB for 24 h. Treatment with 0.2% DMSO for 24h was prepared as non-treated Huh7.5.1 cells. Huh7.5.1 cells were kindly provided by Prof. Francis Chisari at The Scripps Research Institute.