Project description:This study uses iTRAQ based proteomics approach to understand the cellular metabolic machineries present within the Clostridium strain BOH3 (discovered by our group) which can simultaneously utilise both glucose (six carbon sugar) and xylose (five carbon sugar) to produce butanol and riboflavin.
Project description:MS data submission for: Rate-limiting steps in butyrate production in Clostridium butyricum strain CBM588 identified by whole genome and proteome analyses.
Deposition includes raw files in .d format, picked .mzML files and zipped FragPipe results files
Project description:Clostridium perfringens type A is a common source of food poisoning in humans. Vegetative cells sporulate in the small intestinal tract and produce a major pathogenic factor, C. perfringens enterotoxin (CPE) during sporulation. Although sporulation plays a critical role in the pathogenesis of food poisoning, the mechanisms to induce in vivo sporulation remain unclear. Bile salts had been identified to mediate sporulation, and we have confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 co-cultured with human intestinal epithelial Caco-2 cells. In this study, we performed global transcriptome analysis of strain NCTC8239 to elucidate the mechanism to induce sporulation by DCA.