Project description:Bats play an essential role in maintaining ecosystems. Their unique characteristics increase the likelihood of interactions with various species, making them a potential source for the emergence and spread of infectious diseases. Hantaviruses are continuously expanding their range of hosts. This study presents the identification of a partial genome associated with Hantavirus in samples collected from neotropical bats. We conducted a metagenomic study using samples from Carollia perspicillata in Maranhão, Brazil. Tissue fragments were used for RNA extraction and subsequent sequencing. The resulting data was subjected to bioinformatic analysis. A sequence showing an identity of 72.86% with the L gene in the reference genome was obtained. The phylogenetic analysis revealed the study sequence, denoted as Buritiense, clustering within the Mobatvirus clade. The intragroup analysis showed a broader dispersion and were markedly asymmetric. This observation suggests the possibility that Buritiense could potentially represent a new species within the bat-borne hantaviruses, but further analyses are needed to provide additional insights if bats plays a role as reservoirs and the potential for transmission to human populations.
Project description:Distress calls are a vocalization type widespread across the animal kingdom, emitted when the animals are under duress, e.g. when captured by a predator. Here, we report on an observation we came across serendipitously while recording distress calls from the bat species Carollia perspicillata, i.e. the existence of sex difference in the distress calling behaviour of this species. We show that in C. perspicillata bats, males are more likely to produce distress vocalizations than females when hand-held. Male bats call more, their calls are louder, harsher (faster amplitude modulated) and cover lower carrier frequencies than female vocalizations. We discuss our results within a framework of potential hormonal, neurobiological and behavioural differences that could explain our findings, and open multiple paths to continue the study of sex-related differences in vocal behaviour in bats.