Project description:Epithelial cells are the first cell type Salmonella Typhimurium will encounter when infecting a host. Using DNA array techology we identified the Salmonella enterica Typhimurium genes regulated inside human epithelial cells and their variation through time.
Project description:FabR ChIP-chip on Salmonella enterica subsp. enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged FabR (IP samples) and wildtype strain (mock IP samples)
Project description:We performed affinity purification coupled to quantitative mass spectrometry (AP-qMS) for proteins belonging to retrons of Salmonella enterica. We quantified the proteome of rcaT point mutants in Salmonella enterica. We quantified the proteome of phage P1vir in E. coli.
Project description:Salmonella enterica causes serious global burden of morbidity and mortality and is a major cause of infant bacteremia in sub Saharan Africa. Diseases caused by Salmonella are treatable with antibiotics but successful antibiotic treatment has become difficult due to antimicrobial resistance. An effective vaccine together with public health effort may therefore be a better strategy to control these infections. Protective immunity against Salmonella depends primarily on T cell-mediated immune responses and therefore identifying relevant T cell antigens is necessary for Salmonella vaccine development. Our laboratory has used an immunoproteomics approach to identify Chlamydia T cell antigens that exhibited significant protection against Chlamydia infection in mice. In this study, we infected murine bone marrow derived dendritic cells from C57BL/6 mice with Salmonella enterica strain SL1344 followed by isolation of MHC class I and II- molecules and elution of bound peptides. The sequences of the peptides were then identified using tandem mass spectrometry. We identified 87 MHC class II and 23 MHC class I Salmonella derived peptides. Four of 12 peptides stimulated IFN-? production by CD4 T cells from the spleens of mice with persistent Salmonella infection. These antigens will be useful for Salmonella immunobiology research and are potential Salmonella vaccine candidates.
Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to lettuce medium (LM) and lettuce root exudates (LX) to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to tomato medium (TM) and tomato root exudates (TX) compared to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to DS soil suspension (DS) and suspension of autoclaved DS soil (DA) compared to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
Project description:Investigation of whole genome gene expression level changes in a Salmonella enterica serovar Typhimurium 14028 delta GidA mutant The mutant described in this study is further analyzed in Shippy, D. C., N. M. Eakley, P. N. Bochsler, and A. A. Fadl. 2011. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb Pathog.