Project description:We used sea cucumber genomic data as a reference for utilizing TMT-based proteomics to perform differential comparison of protein expression between polian vesicle at 6h and 3 days post-evisceration and pre-evisceration in Apostichopus japonicus.
Project description:Intestine of a total of 9 idividuals was sampled. The individuals were collected from 3 groups: Control (C), Heat stress 6h (HS6h) and Heat stress 48h (HS48h).After protein extraction,trypsin digestion and enrichment of Lys-acetylated peptides, the eluted peptides was applied with LC-MS/MS detection and data analysis.Lysine acetylproteome profiling reveals key acetylated proteins involved in heat shock response in the sea cucumber Apostichopus japonicus
Project description:Sea cucumber, Apostichopus japonicus is a very important species for aquaculture, and its behavior and physiology can respond to the initial change in salinity. It is important to understand the molecular responses of A. japonicus when exposed to ambient changes in salinity In this study, RNA-seq provided a general overview of the gene expression profiles of the intestine of A. japonicus exposed to high salinity (SD40), normal salinity (SD30) and low salinity (SD20) environment.
Project description:The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation.