Project description:Typical enteropathogenic Escherichia coli (EPEC) O55:H7 is regarded as the closest relative of enterohemorrhagic E. coli (EHEC) O157:H7. Both serotypes usually express the γ1 intimin subclass and trigger actin polymerazation by the Tir-TccP pathway. However, atypical O55:H7 strains capable of triggering actin polymerization via the Tir-Nck pathway have recently been identified. In this study, we investigated the genotypic differences and phylogenetic relationships between typical and atypical O55:H7 strains. We show that the atypical O55:H7 strains, which express the θ intimin subclass and lack both tccP and tccP2, belong to an E. coli lineage distinct from the typical O55:H7 and from the EPEC O55:H6, which also uses the Tir-Nck actin polymerization pathway. We conducted genomic comparisons of the chromosomal regions covering the O-antigen gene cluster and its flanking regions between the three O55 lineages by restriction fragment length polymorphism analysis of PCR products and DNA sequencing analysis of about 65-kb chromosomal regions. This unexpectedly revealed that horizontal transfer of large fragments (≥ 40 kb) encoding the O55-antigen gene cluster and part of neighboring colanic acid gene cluster is involved in the emergence of the three O55 E. coli lineages. The data provide new insights into the mechanisms involved in the generation of a wide variety of O-serotypes in Gram-negative bacteria. Keywords: comparative genomic hybridization
Project description:Typical enteropathogenic Escherichia coli (EPEC) O55:H7 is regarded as the closest relative of enterohemorrhagic E. coli (EHEC) O157:H7. Both serotypes usually express the γ1 intimin subclass and trigger actin polymerazation by the Tir-TccP pathway. However, atypical O55:H7 strains capable of triggering actin polymerization via the Tir-Nck pathway have recently been identified. In this study, we investigated the genotypic differences and phylogenetic relationships between typical and atypical O55:H7 strains. We show that the atypical O55:H7 strains, which express the θ intimin subclass and lack both tccP and tccP2, belong to an E. coli lineage distinct from the typical O55:H7 and from the EPEC O55:H6, which also uses the Tir-Nck actin polymerization pathway. We conducted genomic comparisons of the chromosomal regions covering the O-antigen gene cluster and its flanking regions between the three O55 lineages by restriction fragment length polymorphism analysis of PCR products and DNA sequencing analysis of about 65-kb chromosomal regions. This unexpectedly revealed that horizontal transfer of large fragments (⥠40 kb) encoding the O55-antigen gene cluster and part of neighboring colanic acid gene cluster is involved in the emergence of the three O55 E. coli lineages. The data provide new insights into the mechanisms involved in the generation of a wide variety of O-serotypes in Gram-negative bacteria. Keywords: comparative genomic hybridization Total 8 test samples were analyzed. Genomic DNA from each test strain and a reference strain (O157 Sakai) were labeled with Cy3 and Cy5, respectively, and were cohybridized on a single array. Labeling and hybridization were performed twice independently.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Study of the mechanisms of RecB mutant terminus DNA loss in Escherichia coli. FX158: WT MG1655 FX35: recB- FX37: ruvAB- FX51: matP- MIC18: recB- sbcD- sbcC- MIC20: recB- ruvAB- MIC24: matP- recB- MIC25: recA- recB- MIC31: sbcB- sbcD- MIC34: recA- recD- MIC40: linear chromosome MIC41: linear chromosome recB- MIC42: matP- ftsKC- MIC43: matP- ftsKC- recB- MIC48: recA- Cells were grown in M9 minimal medium supplemented with 0.4 % glucose to exponential phase (0.2 OD 650 nm). Chromosomal DNA was extracted using the Sigma GenElute bacterial genomic DNA kit. 5 μg of DNA were used to generate a genomic library according to Illumina's protocol. The libraries and the sequencing were performed by the High-throughput Sequencing facility of the I2BC (http://www.i2bc.paris-saclay.fr/spip.php?article399&lang=en, CNRS, Gif-sur-Yvette, France). Genomic DNA libraries were made with the ‘Nextera DNA library preparation kit’ (Illumina) following the manufacturer’s recommendations. Library quality was assessed on an Agilent Bioanalyzer 2100, using an Agilent High Sensitivity DNA Kit (Agilent technologies). Libraries were pooled in equimolar proportions. 75 bp single reads were generated on an Illumina MiSeq instrument, using a MiSeq Reagent kit V2 (500 cycles) (Illumina), with an expected depth of 217X. An in-lab written MATLAB-based script was used to perform marker frequency analysis. Reads were aligned on the Escherichia coli K12 MG1655 genome using BWA software. Data were normalized by dividing uniquely mapping sequence reads by the total number of reads. Enrichment of uniquely mapping sequence reads in 1 kb non-overlapping windows were calculated and plotted against the chromosomal coordinates.