Project description:mRNA profiling of WI38 wild-type or overexpressiong the SUMO E3 ligase PIASy in human primary fibroblasts 24h post-infection. The goal of this study is to analyse transcriptional changes in cells over-expressing the SUMO E3 ligase PIASy and to compare them with ChIPseq data for several histones marks and proteins of the SUMO machinery including PIASy
Project description:FBXW7 is and E3 ubiquitin ligase and is highly mutated in colorectal cancer. We used human colon organoids with engineered FBXW7 hotspot mutations to investigate novel targets of E3 ligase activity with a combined transcriptomic and proteomic approach uncovering the EGFR-MAPK pathway as highly regulated by the E3 ligase activity.
Project description:To screen differentially expression circRNAs between tissues of normal endometrium (control) and intrauterine adhesion (IUA) in human.
Project description:PROteolysis Targeting Chimeras (PROTACs) are bifunctional molecules that degrade target proteins through recruiting E3 ligases. However, their application is limited in part because few E3 ligases can be recruited by known E3 ligase ligands. In this study, we identified piperlongumine (PL), a natural product, as a covalent E3 ligase recruiter, which induces CDK9 degradation when it is conjugated with SNS032, a CDK9 inhibitor. The lead conjugate 955 can potently degrade CDK9 in a ubiquitin-proteasome-dependent manner and is much more potent than SNS-032 against various tumor cells in vitro. Mechanistically, we identified KEAP1 as the E3 ligase recruited by 955 to degrade CDK9 through a TurboID-based proteomics study, which was further confirmed by KEAP1 knockout and the nanoBRET ternary complex formation assay. In addition, PL-Ceritinib conjugate can degrade EML4-ALK fusion oncoprotein, suggesting that PL may have a broader application as a covalent E3 ligase ligand in targeted protein degradation.
Project description:It has been recognized that BRCA1, in the form of the BRCA1/BARD1 heterodimer, acting as an ubiquitin E3 ligase offered a possible mechanism to explain its pleiotrophic nature of BRCA1 activity. Our observation that mice lacking BRCA1 enzymatic activity are viable apart from male sterility was unexpected. Our results suggest that the E3 ligase activity of BRCA1 is largely dispensable for normal development and is not essential for all BRCA1 functions. Thus, many of the known and unknown functions of BRCA1 are likely to be mediated independent of its ability to catalyze ubiquitination. The genome copy number patterns were studied on the mice tumors that lacks E3 ubiqitin ligase activity of BRCA1 and were compared to copy number profile of mice lacking p53 and both brca1 and p53.
Project description:It has been recognized that BRCA1, in the form of the BRCA1/BARD1 heterodimer, acting as an ubiquitin E3 ligase offered a possible mechanism to explain its pleiotrophic nature of BRCA1 activity. Our observation that mice lacking BRCA1 enzymatic activity are viable apart from male sterility was unexpected. Our results suggest that the E3 ligase activity of BRCA1 is largely dispensable for normal development and is not essential for all BRCA1 functions. Thus, many of the known and unknown functions of BRCA1 are likely to be mediated independent of its ability to catalyze ubiquitination. The genome copy number patterns were studied on the mice tumors that lacks E3 ubiqitin ligase activity of BRCA1 and were compared to copy number profile of mice lacking p53 and both brca1 and p53. Array CGH was performed using Agilent mouse CGH microarray 244K kit. Genomic DNA isolated from tumor tissue and its corresponding mouse tail were labelled with two different dyes and hybridized simultaneously on to microarray slides to perform comparitive genomic hybridization.
Project description:To identify substrates of the ubiquitinating E3 enzyme Rsp5 we applied purified Rsp5 to duplicate protein arrays. The Rsp proteins were expressed as fusion proteins to GST. We used as a control Ubr1, a RING domain containing E3 ligase We analyzed Rsp5 from S.cerevisiae on duplicate arrays, with four control chips, two without Rsp5 and two with Ubr1.
Project description:The heat shock response is critical for organisms to survive at a high temperature. Heterologous expression of eukaryotic molecular chaperons protects Escherichia coli against heat stress. Here we report that expression of the plant E3 ligase BnTR1 significantly increase the thermotolerance of Escherichia coli. Different from eukaryotic chaperones, BnTR1 post-transcriptionally regulates the heat shock factor σ32 though zinc fingers of the RING domain, which interacts with DnaK resulting in stabilizing σ32 and subsequently up-regulating heat shock proteins. Our findings indicate the expression of BnTR1 confers thermoprotective effects on E. coli cells, and it may provide useful clues to engineer thermophilic bacterial strains.