Project description:the transcriptome changes in long-term different salinity gradients were determined to investigate the related gene responsible for the molecular involvements to M. nipponense after long-term salinity exposure.
Project description:Vascular disruption following bony injury results in a hypoxic gradient within the wound microenvironment. Nevertheless, the effects of low oxygen tension on osteogenic precursors remain to be fully elucidated. In the present study, we investigated in vitro osteoblast and mesenchymal stem cell differentiation following exposure to 21% O(2) (ambient oxygen), 2% O(2) (hypoxia), and <0.02% O(2) (anoxia). Hypoxia had little effect on osteogenic differentiation. In contrast, short-term anoxic treatment of primary osteoblasts and mesenchymal precursors inhibited in vitro bone nodule formation and extracellular calcium deposition. Cell viability assays revealed that this effect was not caused by immediate or delayed cell death. Microarray profiling implicated down-regulation of the key osteogenic transcription factor Runx2 as a potential mechanism for the anoxic inhibition of differentiation. Subsequent analysis revealed not only a short-term differential regulation of Runx2 and its targets by anoxia and hypoxia, but a long-term inhibition of Runx2 transcriptional and protein levels after only 12-24 h of anoxic insult. Furthermore, we present evidence that Runx2 inhibition may, at least in part, be because of anoxic repression of BMP2, and that restoring Runx2 levels during anoxia by pretreatment with recombinant BMP2 rescued the anoxic inhibition of differentiation. Taken together, our findings indicate that brief exposure to anoxia (but not 2% hypoxia) down-regulated BMP2 and Runx2 expression, thus inhibiting critical steps in the osteogenic differentiation of pluripotent mesenchymal precursors and committed osteoblasts.
Project description:Vascular disruption following bony injury results in a hypoxic gradient within the wound microenvironment. Nevertheless, the effects of low oxygen tension on osteogenic precursors remain to be fully elucidated. In the present study, we investigated in vitro osteoblast and mesenchymal stem cell differentiation following exposure to 21% O(2) (ambient oxygen), 2% O(2) (hypoxia), and <0.02% O(2) (anoxia). Hypoxia had little effect on osteogenic differentiation. In contrast, short-term anoxic treatment of primary osteoblasts and mesenchymal precursors inhibited in vitro bone nodule formation and extracellular calcium deposition. Cell viability assays revealed that this effect was not caused by immediate or delayed cell death. Microarray profiling implicated down-regulation of the key osteogenic transcription factor Runx2 as a potential mechanism for the anoxic inhibition of differentiation. Subsequent analysis revealed not only a short-term differential regulation of Runx2 and its targets by anoxia and hypoxia, but a long-term inhibition of Runx2 transcriptional and protein levels after only 12-24 h of anoxic insult. Furthermore, we present evidence that Runx2 inhibition may, at least in part, be because of anoxic repression of BMP2, and that restoring Runx2 levels during anoxia by pretreatment with recombinant BMP2 rescued the anoxic inhibition of differentiation. Taken together, our findings indicate that brief exposure to anoxia (but not 2% hypoxia) down-regulated BMP2 and Runx2 expression, thus inhibiting critical steps in the osteogenic differentiation of pluripotent mesenchymal precursors and committed osteoblasts. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Computed
Project description:In estuaries and coastal areas, salinity regimes vary with river discharge, seawater evaporation, morphology of the coastal waterways, and dynamics of marine water mixing. Therefore, microalgae have to respond to salinity variations at various time scales, from daily to annual cycling. They might also adapt to physical alteration that might induce loss of connectivity and enclosure of water bodies. Here we integrate physiological-based assays, morphological plasticity with functional genomics approach to examine the regulatory change that occur during the acclimation to salinity in an estuary diatom, Thalassiosira weissflogii. We found that this diatom respond to salinity (i.e. 21, 28 and 35 psu) with minute adjustments of its physiology (i.e., carbon and silicon metabolisms, pigments concentration and photosynthetic parameters). In contrast after short- (~ 5 generations) or long-term (~ 700 generations) culture at the different salinity we found a large transcriptome reprogramming. With most of the genes being down-regulated in long-term, and only a few genes in common between short and long term experiments.