Project description:Antibiotic resistance is exacerbated by the exchange of antibiotic resistance genes (ARGs) between microbes from diverse habitats. Plasmids are important ARGs mobile elements and are spread by horizontal gene transfer (HGT). In this study, we demonstrated the presence of multi-resistant plasmids from inhalable particulate matter (PM) and its effect on gene horizontal transfer. Three transferable multi-resistant plasmids were identified from PM in a hospital, using conjugative mating assays and nanopore sequencing. pTAir-3 contained 26 horizontal transfer elements and 10 ARGs. Importantly pTAir-5 harbored carbapenem resistance gene (blaOXA) which shows homology to plasmids from human and pig commensal bacteria, thus indicating that PM is a media for antibiotic resistant plasmid spread. In addition, 125 μg/mL PM2.5 and PM10 significantly increased the conjugative transfer rate by 110% and 30%, respectively, and augmented reactive oxygen species (ROS) levels. Underlying mechanisms were revealed by identifying the upregulated expressional levels of genes related to ROS, SOS, cell membranes, pilus generation, and transposition via genome-wide RNA sequencing. The study highlights the airborne spread of multi-resistant plasmids and the impact of inhalable PM on the horizontal transfer of antibiotic resistance.
2022-10-31 | GSE159850 | GEO
Project description:Bacteria and antibiotic resistance genes during carcass decomposition
Project description:Evolution of antibiotic resistance in microbes is frequently achieved by acquisition of spontaneous mutations during antimicrobial therapy. Here we demonstrate that inactivation of a central regulator of iron homeostasis (fur) facilitates laboratory evolution of ciprofloxacin resistance in Escherichia coli. To decipher the underlying molecular mechanisms, we first performed a global transcriptome analysis and demonstrated a substantial reorganization of the Fur regulon in response to antibiotic treatment. We hypothesized that the impact of Fur on evolvability under antibiotic pressure is due to the elevated intracellular concentration of free iron and the consequent enhancement of oxidative damage-induced mutagenesis. In agreement with expectations, over-expression of iron storage proteins, inhibition of iron transport, or anaerobic conditions drastically suppressed the evolution of resistance, while inhibition of the SOS response-mediated mutagenesis had no such effect in fur deficient population. In sum, our work revealed the central role of iron metabolism in de novo evolution of antibiotic resistance, a pattern that could influence the development of novel antimicrobial strategies. We used microarrays to identify genotype specific transcriptional changes under severe DNA damaging conditions (antibiotic ciprofloxacin). We treated Escherichia coli cells with a highly toxic level of ciprofloxacin (gyrase inhibitor) for RNA extraction and hybridization on Affymetrix microarrays. We planned to find genotype specific transcriptional responses using WT control (BW25113) and fur-knockout mutant (selected from the KEIO collection) strains during antibiotic treatments. For each treatment type we used two biological replicates.
Project description:Evolution of antibiotic resistance in microbes is frequently achieved by acquisition of spontaneous mutations during antimicrobial therapy. Here we demonstrate that inactivation of a central regulator of iron homeostasis (fur) facilitates laboratory evolution of ciprofloxacin resistance in Escherichia coli. To decipher the underlying molecular mechanisms, we first performed a global transcriptome analysis and demonstrated a substantial reorganization of the Fur regulon in response to antibiotic treatment. We hypothesized that the impact of Fur on evolvability under antibiotic pressure is due to the elevated intracellular concentration of free iron and the consequent enhancement of oxidative damage-induced mutagenesis. In agreement with expectations, over-expression of iron storage proteins, inhibition of iron transport, or anaerobic conditions drastically suppressed the evolution of resistance, while inhibition of the SOS response-mediated mutagenesis had no such effect in fur deficient population. In sum, our work revealed the central role of iron metabolism in de novo evolution of antibiotic resistance, a pattern that could influence the development of novel antimicrobial strategies. We used microarrays to identify genotype specific transcriptional changes under severe DNA damaging conditions (antibiotic ciprofloxacin).
2014-09-11 | GSE55662 | GEO
Project description:Dynamics of antibiotic and antibiotic resistance genes during spectinomycin mycelia dregs fermenting
| PRJNA723988 | ENA
Project description:Stduy of removing antibiotic resistance genes during composting maturity phase
| PRJNA1250800 | ENA
Project description:Antibiotic Resistance Genes of feces
| PRJNA830819 | ENA
Project description:antibiotic resistance genes in soils