Project description:BackgroundThe human orphan receptor TLX (NR2E1) is a key regulator of neurogenesis, adult stem cell maintenance, and tumorigenesis. However, little is known about the genetic and transcriptomic events that occur following TLX overexpression in human cell lines.AimsHere, we used cytogenetics and RNA sequencing to investigate the effect of TLX overexpression with an inducible vector system in the HEK 293T cell line.Methods and resultsConventional spectral karyotyping was used to identify chromosomal abnormalities, followed by fluorescence in situ hybridization (FISH) analysis on chromosome spreads to assess TLX DNA copy number. Illumina paired-end whole transcriptome sequencing was then performed to characterize recurrent genetic variants (single nucleotide polymorphisms (SNPs) and indels), expressed gene fusions, and gene expression profiles. Lastly, flow cytometry was used to analyze cell cycle distribution. Intriguingly, we show that upon transfection with a vector containing the human TLX gene (eGFP-hTLX), an isochromosome forms on the long arm of chromosome 6, thereby resulting in DNA gain of the TLX locus (6q21) and upregulation of TLX. Induction of the eGFP-hTLX vector further increased TLX expression levels, leading to G0-G1 cell cycle arrest, genetic aberrations, modulation of gene expression patterns, and crosstalk with other nuclear receptors (AR, ESR1, ESR2, NR1H4, and NR3C2). We identified a 49-gene signature associated with central nervous system (CNS) development and carcinogenesis, in addition to potentially cancer-driving gene fusions (LARP1-CNOT8 and NSL1-ZDBF2) and deleterious genetic variants (frameshift insertions in the CTSH, DBF4, POSTN, and WDR78 genes).ConclusionTaken together, these findings illustrate that TLX may play a pivotal role in tumorigenesis via genomic instability and perturbation of cancer-related processes.
Project description:ObjectiveThe study of the circadian clock and its mechanisms is easily facilitated through clock resetting in cell culture. Among the various established synchronizers of the circadian clock in cell culture (temperature, serum shock, glucocorticoids), the artificial glucocorticoid Dexamethasone (DEX) is the most widely used. DEX treatment as a protocol to reset the circadian clock in culture gives simple readout with minimal laboratory requirements. Even though there are many studies regarding clock resetting in culture using DEX, reference points or expression patterns of core clock genes and their protein products are scarce and sometimes contradict other works with similar methodology. We synchronise a cell line of human origin with DEX to be used for studies on circadian rhythms.ResultsWe treat HEK 293T cells with DEX and describe the patterns of mRNA and proteins of core clock regulators, while making a clear point on how CLOCK is less than an ideal molecule to help monitor rhythms in this cell line.
Project description:Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are regarded as 'incretins' working closely to regulate glucose homeostasis. Unimolecular dual and triple agonists of GLP-1R and GIPR have shown remarkable clinical benefits in treating type 2 diabetes. However, their pharmacological characterization is usually carried out in a single receptor-expressing system. In the present study we constructed a co-expression system of both GLP-1R and GIPR to study the signaling profiles elicited by mono, dual and triple agonists. We show that when the two receptors were co-expressed in HEK 293T cells with comparable receptor ratio to pancreatic cancer cells, GIP predominately induced cAMP accumulation while GLP-1 was biased towards β-arrestin 2 recruitment. The presence of GIPR negatively impacted GLP-1R-mediated cAMP and β-arrestin 2 responses. While sharing some common modulating features, dual agonists (peptide 19 and LY3298176) and a triple agonist displayed differentiated signaling profiles as well as negative impact on the heteromerization that may help interpret their superior clinical efficacies.
Project description:Voltage-gated Ca(2+) (Cav) channels regulate a variety of biological processes, such as muscle contraction, gene expression, and neurotransmitter release. Cav channels are subject to diverse forms of regulation, including those involving the Ca(2+) ions that permeate the pore. High voltage-activated Cav channels undergo Ca(2+)-dependent inactivation (CDI) and facilitation (CDF), which can regulate processes such as cardiac rhythm and synaptic plasticity. CDI and CDF differ slightly between Cav1 (L-type) and Cav2 (P/Q-, N-, and R-type) channels. Human embryonic kidney cells transformed with SV40 large T-antigen (HEK-293T) are advantageous for studying CDI and CDF of a particular type of Cav channel. HEK-293T cells do not express endogenous Cav channels, but Cav channels can be expressed exogenously at high levels in these cells by transient transfection. This protocol describes how to characterize and analyze Ca(2+)-dependent modulation of recombinant Cav channels in HEK-293T cells.
Project description:Phospholamban (PLN) is an important Ca2+ modulator at the sarcoplasmic reticulum (SR) of striated muscles. It physically interacts and inhibits sarcoplasmic reticulum Ca2+ ATPase (SERCA2) function, whereas a protein kinase A (PKA)-dependent phosphorylation at its serine 16 reverses the inhibition. The underlying mechanism of this post-translational modification, however, remains not fully understood. Using publicly available databases, we identified A-kinase anchoring protein 6 (AKAP6) as a candidate that might play some roles in PLN phosphorylation. Immunofluorescence showed colocalization between GFP-AKAP6 and PLN in transfected HEK-293T cells and cultured mouse neonatal cardiomyocytes (CMNCs). Co-immunoprecipitation confirmed the functional interaction between AKAP6 and PLN in HEK-293T and isolated adult rat cardiomyocytes in response to isoproterenol stimulation. Functionally, AKAP6 promoted Ca2+ uptake activity of SERCA1 in cotransfected HEK-293T cells despite the presence of PLN. These results were further confirmed in adult rat cardiomyocytes. Immunofluorescence showed colocalization of both proteins around the perinuclear region, while protein-protein interaction was corroborated by immunoprecipitation of the nucleus-enriched fraction of rat hearts. Our findings suggest AKAP6 as a novel interacting partner to PLN in HEK-293T and murine cardiomyocytes.
Project description:Two candidate small interfering RNAs (siRNAs) corresponding to severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike gene were designed and in vitro transcribed to explore the possibility of silencing SARS-CoV S gene. The plasmid pEGFP-optS, which contains the codon-optimized SARS-CoV S gene and expresses spike-EGFP fusion protein (S-EGFP) as silencing target and expressing reporter, was transfected with siRNAs into HEK 293T cells. At various time points of posttransfection, the levels of S-EGFP expression and amounts of spike mRNA transcript were detected by fluorescence microscopy, flow cytometry, Western blot, and real-time quantitative PCR, respectively. The results showed that the cells transfected with pEGFP-optS expressed S-EGFP fusion protein at a higher level compared with those transfected with pEGFP-S, which contains wildtype SARS-CoV spike gene sequence. The green fluorescence, mean fluorescence intensity, and SARS-CoV S RNA transcripts were found significantly reduced, and the expression of SARS-CoV S glycoprotein was strongly inhibited in those cells co-transfected with either EGFP- or S-specific siRNAs. Our findings demonstrated that the S-specific siRNAs used in this study were able to specifically and effectively inhibit SARS-CoV S glycoprotein expression in cultured cells through blocking the accumulation of S mRNA, which may provide an approach for studies on the functions of SARS-CoV S gene and development of novel prophylactic or therapeutic agents for SARS-CoV.
Project description:UNLABELLED:We devised a model system to study persistent infection by the tick-borne flavivirus Langat virus (LGTV) in 293T cells. Infection with a molecularly cloned LGTV strain produced an acute lytic crisis that left few surviving cells. The culture was repopulated by cells that were ~90% positive for LGTV E protein, thus initiating a persistent infection that was maintained for at least 35 weeks without additional lytic crises. Staining of cells for viral proteins and ultrastructural analysis revealed only minor differences from the acute phase of infection. Infectious LGTV decreased markedly over the study period, but the number of viral genomes remained relatively constant, suggesting the development of defective interfering particles (DIPs). Viral genome changes were investigated by RNA deep sequencing. At the initiation of persistent infection, levels of DIPs were below the limit of detection at a coverage depth of 11,288-fold, implying that DIPs are not required for initiation of persistence. However, after 15 passages, DIPs constituted approximately 34% of the total LGTV population (coverage of 1,293-fold). Furthermore, at this point, one specific DIP population predominated in which nucleotides 1058 to 2881 had been deleted. This defective genome specified an intact polyprotein that coded for a truncated fusion protein containing 28 N-terminal residues of E and 134 C-terminal residues of NS1. Such a fusion protein has not previously been described, and a possible function in persistent infection is uncertain. DIPs are not required for the initiation of persistent LGTV infection but may play a role in the maintenance of viral persistence. IMPORTANCE:Tick-borne flaviviruses are significant infectious agents that cause serious disease and death in humans worldwide. Infections are characterized by severe neurological symptoms, such as meningitis and encephalitis. A high percentage of people who get infected and recuperate from the acute phase of infection continue to suffer from chronic debilitating neurological sequelae, most likely as a result of nervous tissue damage, viral persistence, or both. However, little is known about mechanisms of viral persistence. Therefore, we undertook studies to investigate the persistence of Langat virus, a member of the tick-borne flavivirus group, in a mammalian cell line. Using next-generation sequencing, we determined that defective viral genomes do not play a role in the initiation of persistence, but their occurrence seems to be nonstochastic and could play a role in the maintenance of viral persistence via the expression of a novel envelope-NS1 fusion protein.
Project description:Expression analysis of gene expression changes in Homo sapiens SGC-7901 cells after knock down of MTA2 (Metastasis-associated protein) or overexpression SNHG5 (snoRNA host gene 5) Investigation of whole genome gene expression level changes in a Homo sapiens gastric carcinoma cells SGC-7901 after knock down MTA2 expression and upregulation of SNHG5
Project description:Homo sapiens fresh whole blood was infected with Candida parapsilosis. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Measurement of Homo sapiens gene expression.