Project description:We analysed scRNA-seq data in human pluripotent stem cell-derived embryonic spinal cord model. This in vitro system recapitulates some key aspects of spinal cord DV patterning as well as neural crest migration.
Project description:Tertiary lymphoid structures (TLS) are organized aggregates of B and T cells formed ectopically during different life periods in response to inflammation, infection, or cancer. Here, we describe formation of structures reminiscence of TLS in the spinal cord meninges under several central nervous system (CNS) pathologies. Following acute spinal cord injury, B and T lymphocytes locally aggregate within the meninges to form TLS, which continue to accumulate during the late phase of repair, with a negative impact on subsequent pathological conditions, such as experimental autoimmune encephalomyelitis. Using a chronic model of spinal cord pathology, the mSOD1 mouse model of amyotrophic lateral sclerosis, we further showed by single cell RNA-sequencing that a meningeal lymphocyte niche forms, with a unique organization and activation state, including accumulation of pre-B cells in the spinal cord meninges. Such a response was not found in the CNS-draining cervical lymph nodes. The present findings suggest that a unique immune response develops in the meninges during various neurological pathologies in the CNS, a reflection of its immune privileged nature.
Project description:To comprehensively elucidate metabolite changes in different anatomical structures (e.g., gray matter and white matter) after spinal cord injury(SCI), our study utilized air-flow-assisted desorption electrospray ionization mass spectrometry imaging platforms to perform untargeted metabolomic studies. These analyzes are designed to identify metabolites critical in spinal cord injury. confirmed the profile differences in white and gray matter as well as in ventral and dorsal horns after SCI. These results provide valuable information for understanding in situ metabolite alterations after SCI.
Project description:The spinal cord is the critical part of the central nervous system. We performed scRNA-seq and Visum spatial RNA-seq to decipher the development of human spinal cord in the embryonic stage. Together, we reveal the dynamics of neural lineage and glial lineage during the development of human spinal cord.
Project description:We investigated the gene expression profile of monocyte-derived macrophages and microglia following spinal cord injury. Moreover, we investigated the gene expression profole of M-CSF induced macrophages and new-born derived microglia following TGFb1 treatment. monocyte-derived macrophages and microglia following spinal cord injury M-CSF induced macrophages and new-born derived microglia following TGFb1 treatment
Project description:Adult zebrafish have the ability to recover from spinal cord injury and exhibit re-growth of descending axons from the brainstem to the spinal cord. We performed gene expression analysis using microarray to find damage-induced genes after spinal cord injury, which shows that Sox11b mRNA is up-regulated at 11 days after injury. However, the functional relevance of Sox11b for regeneration is not known. Here, we report that the up-regulation of Sox11b mRNA after spinal cord injury is mainly localized in ependymal cells lining the central canal and in newly differentiating neuronal precursors or immature neurons. Using an in vivo morpholino-based gene knockout approach, we demonstrate that Sox11b is essential for locomotor recovery after spinal cord injury. In the injured spinal cord, expression of the neural stem cell associated gene, Nestin, and the proneural gene Ascl1a (Mash1a), which are involved in the self-renewal and cell fate specification of endogenous neural stem cells, respectively, is regulated by Sox11b. Our data indicate that Sox11b promotes neuronal determination of endogenous stem cells and regenerative neurogenesis after spinal cord injury in the adult zebrafish. Enhancing Sox11b expression to promote proliferation and neurogenic determination of endogenous neural stem cells after injury may be a promising strategy in restorative therapy after spinal cord injury in mammals. Spinal cord injury or control sham injury was performed on adult zebrafish. After 4, 12, or 264 hrs, a 5 mm segment of spinal cord was dissected and processed (as a pool from 5 animals) in three replicate groups for each time point and treatment.
Project description:Transcriptome analysis of spinal cord microglia and total spinal cord from Lewis rats intratracheally treated with PBS, neomycin or vancomycin.