Project description:This study examined the functional response of a host (zebrafish) to implantation of a conspecific or allospecific (goldfish) gastrointestinal (GIT) microbiome followed by diet manipulation and the repercussions of these manipulations on host GIT physiology. Implantation of a native zebrafish biome successfully reintroduced wildtype (WT) communities with the exception of several rare, phylogenetically distant species. Implantation of a foreign goldfish biome created communities that were distinct from WT, suggesting that the seeding community created substantial differences from the native host communities. A mismatched ?natural? diet and an implanted allospecific biome enriched for rarer and more phylogenetically diverse bacteria. Transcriptional changes within the GIT clustered in relationship to biome treatments, mirroring clustering of biome implants. Implantation of an allospecific biome along with an altered diet markedly down-regulated approximately 70% of the transcripts involved in cholesterol biosynthesis, while tissue content analysis revealed an increase in total tissue cholesterol. Furthermore, transcripts involved in lipogenesis pathways were significantly downregulated and correlated with a striking decrease in intestinal lipase activity driven by both biome and diet. Glucose-6P dehydrogenase (G6PD) activities increased during dietary manipulations regardless of biome, while the allospecific biome down-regulated transcripts involved in gluconeogenesis and altered glucokinase (GK) and hexokinase (HK) activities regardless of diet. However, growth rates did not reveal an impact of these responses. Adult zebrafish are unable to reform proportional representation within bacterial communities following transplantation of an allospecific biome resulting in transcriptional and enzymatic alterations for lipid and carbohydrate metabolism that did not affect overall animal homeostasis.
Project description:Background: In classrooms high concentrations of particulate matter PM10 were measured. It is unknown whether the hazard of indoor particles is similar to that of the better studied outdoor particles. This study therefore analyzed adverse biological effects of classroom in comparison to outdoor PM10. Methods: Samples were taken from six schools during teaching hours. Genome-wide gene expression in human bronchial BEAS-2B epithelial cells was analyzed, and regulated genes were verified by quantitative PCR. Polycyclic aromatic hydrocarbons (PAH), endotoxin, and cat allergen Fel d 1 were analyzed with standard methods. Enhancement of allergic reactivity by PM10 was confirmed with CD63 upregulation in human primary basophils. Acceleration of human blood coagulation was determined with supernatants of PM10-exposed human peripheral blood monocytes. Results: Indoor PM10 induced SERPINB2 (involved in blood coagulation) and inflammatory genes (like CXCL6, CXCL1, IL6, IL8, all p<0.001). Outdoor PM10 induced xenobiotic metabolizing enzymes (CYP1A1, CYP1B1, TIPARP, all p<0.001). The induction of inflammatory genes by indoor PM10 could be explained by endotoxin (indoor 128.5M-BM-142.2EU/mg versus outdoor 13.4M-BM-121.5EU/mg, p<0.001), the induction of CYP by outdoor PAH (indoor 8.3M-BM-14.9ng/mg versus outdoor 16.7M-BM-115.2ng/mg, p<0.01). The induction of SERPINB2 was confirmed by a more rapid human blood coagulation (p<0.05). Indoor PM10 had no effect on the allergic reactivity from human primary basophils, except in cat allergic individuals. This was explained by varying Fel d 1 concentrations in indoor PM10 (p<0.001). Conclusions: Indoor PM10, compared to outdoor PM10, was 6 times higher, had a different composition, and on an equal weight basis induced more inflammatory and allergenic reactions, and accelerated blood coagulation. Outdoor PM10 had significantly lower effects, but induced detoxifying enzymes. Therefore, preliminary interventions for the reduction of classroom PM10 seem reasonable, perhaps by intensified ventilation. For genome-wide gene expression analysis, BEAS-2B cells (passage 41) were incubated with 10M-BM-5g/ml PM10 (school 4 indoor and outdoor) for 4, 10 or 24h, all in triplicate. experiment type : time course
Project description:We aimed to elucidate the effects of feeding condition (indoor grain-feeding vs. grazing on pasture) on c-miRNAs in Japanese Black (JB) cattle (Wagyu). The cattle at 18 months old were divided into pasture feeding and conventional indoor grain feeding for 5 months. Microarray analysis of c-miRNAs from the plasma extracellular vesicles led to the detection of a total of 202 bovine miRNAs in the plasma, including 15 miRNAs that differed between the feeding conditions.
Project description:Background: In classrooms high concentrations of particulate matter PM10 were measured. It is unknown whether the hazard of indoor particles is similar to that of the better studied outdoor particles. This study therefore analyzed adverse biological effects of classroom in comparison to outdoor PM10. Methods: Samples were taken from six schools during teaching hours. Genome-wide gene expression in human bronchial BEAS-2B epithelial cells was analyzed, and regulated genes were verified by quantitative PCR. Polycyclic aromatic hydrocarbons (PAH), endotoxin, and cat allergen Fel d 1 were analyzed with standard methods. Enhancement of allergic reactivity by PM10 was confirmed with CD63 upregulation in human primary basophils. Acceleration of human blood coagulation was determined with supernatants of PM10-exposed human peripheral blood monocytes. Results: Indoor PM10 induced SERPINB2 (involved in blood coagulation) and inflammatory genes (like CXCL6, CXCL1, IL6, IL8, all p<0.001). Outdoor PM10 induced xenobiotic metabolizing enzymes (CYP1A1, CYP1B1, TIPARP, all p<0.001). The induction of inflammatory genes by indoor PM10 could be explained by endotoxin (indoor 128.5±42.2EU/mg versus outdoor 13.4±21.5EU/mg, p<0.001), the induction of CYP by outdoor PAH (indoor 8.3±4.9ng/mg versus outdoor 16.7±15.2ng/mg, p<0.01). The induction of SERPINB2 was confirmed by a more rapid human blood coagulation (p<0.05). Indoor PM10 had no effect on the allergic reactivity from human primary basophils, except in cat allergic individuals. This was explained by varying Fel d 1 concentrations in indoor PM10 (p<0.001). Conclusions: Indoor PM10, compared to outdoor PM10, was 6 times higher, had a different composition, and on an equal weight basis induced more inflammatory and allergenic reactions, and accelerated blood coagulation. Outdoor PM10 had significantly lower effects, but induced detoxifying enzymes. Therefore, preliminary interventions for the reduction of classroom PM10 seem reasonable, perhaps by intensified ventilation.
Project description:Molecular profiling of childhood CNS tumors is critical for diagnosis and clinical management, yet tissue access is restricted due to the sensitive tumor location. We developed a targeted deep sequencing platform to detect tumor driver mutations, copy number variations, and heterogeneity in the liquid biome. Here, we present the sensitivity, specificity, and clinical relevance of our minimally invasive platform for tumor mutation profiling in children diagnosed with CNS cancer.
Project description:The study investigated the impact of environment on the composition of the gut microbiota and mucosal immune development and function at gut surfaces in early and adult life. Piglets of similar genotype were reared in indoor and outdoor environments and in an experimental isolator facility. Mucosa-adherent microbial diversity in the pig ileum was characterized by sequence analysis of 16S rRNA gene libraries. Host-specific gene responses in gut ileal tissues to differences in microbial composition were investigated using Affymetrix microarray technology and Real-time PCR. Experiment Overall Design: Animals were reared on the sow at an outdoor or indoor facility. Additional piglets from the indoor facility were transferred to individual isolator units at 24 hours of age, and given a daily dose of antibiotic cocktail for the duration of the study. Piglets were weaned at day 28. From day 29 onwards, piglets were fed creep feed ad libitum. Ileal tissue samples were excised from N=6 piglets per group at day 5, 28 and 56.
Project description:Background and aims: As genome sequencing technologies rapidly expand in capacity and availability, understanding how genetic background in different populations modifies IBD risk will be an important factor in disease prediction, prevention, and treatment. However, most of the datasets that are used to generate polygenic risk scores (PRS) contain predominantly European ancestry patients. To address this, we tested different models for prediction of IBD cases using PRS built using association data from multiple races and also assessed the penetrance of rare very early onset IBD (VEOIBD) SNPs. Methods: PRS were calculated using association data from European, African American, and Ashkenazi Jewish (AJ) studies, as well as a meta-GWAS run using all three association datasets. PRS were then combined using regression modelling to assess which combination of scores was best able to predict IBD status in European, AJ, Hispanic, and African American BioMe Biobank populations. Additionally, rare variants were assessed in genes associated with very early onset IBD, taking into account genetic penetrance in each BioMe population, deleteriousness, and evolutionary conservation. Results: Combining risk scores based on IBD association results from multiple racial populations resulted in improved IBD prediction for every population in BioMe. We also identified highly penetrant rare variants in previously established VEOIBD genes which were predicted to be deleterious, including SNPs in established risk genes such as NOD2 as well as novel variants, including some in LRBA which appear to be particularly relevant for risk of IBD in African Americans.