Project description:Recent advances in chromatin architecture profiling technologies, such as single-cell Hi-C (scHi-C), allow us to dissect the heterogeneity of chromosome higher-order structures across diverse cell states and different individuals. However, scHi-C experiments are still expensive and not immediately available for population-scale profiling. Here, we present scENCORE, a computational method, to reconstruct personalized and cell-type-specific higher-order chromatin structures, such as A/B compartments, directly from more cost-effective and widely available single-cell epigenetic data (e.g., scATAC-seq). We apply scENCORE on scATAC-seq data from post-mortem prefrontal cortex brains and demonstrate its utility to 1) project Mega-base scale chromatin regions into lower dimensional space by leveraging graph embedding technologies based on cell-type-specific co-variability patterns, 2) define A/B compartments via unsupervised clustering, 3) perform an alignment algorithm for multi-graph embedding to derive comparable chromatin representations and highlight dynamic chromatin compartments across cell states and individuals. Validated by Hi-C experiments using FACS-sorted cells, scENCORE can faithfully reconstruct cell-type-specific chromatin compartments. Furthermore, scENCORE uniformly constructs chromosome conformation across population-scale scATAC-seq data and discovers key 3D structural switching events associated with psychiatric disorders. In summary, scENCORE allows cost-effective cell-type-specific and personalized reconstruction that delineate higher-order chromatin structures.
Project description:The genomes of many vertebrates show a characteristic variation in GC content. To explain its origin and evolution mainly three mechanisms have been proposed, selection for GC content, mutation bias and GC-biased gene conversion. At present the mechanism of GC-biased gene conversion, i.e. short-scale, unidirectional exchanges between homologous chromosomes in the neighborhood of recombination-initiating double-strand breaks in favor for GC nucleotides, is the most widely accepted hypothesis. We here suggest that DNA methylation also plays an important role in the evolution of GC content in vertebrate genomes. To test this hypothesis we investigated one mammalian (human; GSE30340) and one avian (chicken) genome. We used bisulfite sequencing to generate a whole-genome methylation map of chicken sperm. Human processed data files (spermdonor1, #reads>=1) were downloaded from the NGSmethDB database (http://bioinfo2.ugr.es/NGSmethDB/database.php). Inclusion of these methylation maps into a model of GC content evolution provided significant support for the impact of DNA methylation on the local equilibrium GC content. Moreover, two different estimates of equilibrium GC content, one which neglects and one which incorporates the impact of DNA methylation and the concomitant CpG hypermutability, give estimates that differ about 15% in both genomes, arguing for a strong impact of DNA methylation on the evolution of GC content. Thus, our results put forward that previous estimates of equilibrium GC content, which neglect the hypermutability of CpG dinucleotides, need to be reevaluated. Genomic DNA from chicken mature sperm was isolated, bisulfite converted and sequenced on a Illumina HiSeq instrument
Project description:Topological domains are key architectural building blocks of chromosomes in complex genomes. Their functional importance and evolutionary dynamics are however not well defined. Here we performed comparative Hi-C in liver cells from four mammalian species, and characterized the conservation and divergence of chromosomal contact insulation and the resulting domain architectures within distantly related genomes. We show that the modular organization of chromosomes is robustly conserved in syntenic regions. This overall conservation is compatible with conservation of the binding landscape of the insulator protein CTCF. Specifically, conserved CTCF sites are co-localized with cohesin, enriched at strong topological domain borders and bind to DNA motifs with orientations that define the directionality of CTCF’s long-range interactions. Interestingly, CTCF binding sites which are divergent between species are strongly correlated with divergence of internal domain structure. This divergence is likely driven by local CTCF binding sequence changes, demonstrating how genome evolution can be linked directly with a continuous flux of local chromosome conformation changes. Conversely, we provide evidence that large-scale domains are harder to break and that they are reorganized during genome evolution as intact modules. Hi-C and 4C-seq experiments were conducted in primary liver cells obtained from mouse, rabbit, macaque and dog
Project description:We report here that duplications of 15 kb or more are common in the genome of the social amoeba Dictyostelium discoideum. Most of the axenic "workhorse" strains Ax2 and Ax3/4 obtained from different laboratories can be expected to carry new duplications. The auxotrophic strains DH1 and JH10 also bear previously unreported duplications. Strain Ax3/4 is known to carry a large duplication on chromosome 2 and the domain boundary of this structure shows evidence of further instability; we find a further variable duplication on chromosome 5. These duplications are lacking in Ax2, which has instead a small duplication on chromosome 1. Stocks of the type isolate NC4 are similarly variable, though we have identified some approximating the assumed ancestral genotype. More recent wild-type isolates are almost without duplications, but we can identify small deletions or regions of high divergence, possibly reflecting responses to local selective pressures. Duplications are scattered through most of the genome, and can be stable enough to reconstruct genealogies spanning decades of the history of the NC4 lineage. The expression level of many duplicated genes is increased with dosage, but for others it appears that some form of dosage compensation occurs.
Project description:Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals. Our transcriptome data provide a valuable resource for functional and evolutionary analyses of mammalian genomes.
Project description:Eukaryotic genomes typically consist of multiple (linear) chromosomes that are replicated from multiple origins. Several hypothetical scenarios have been proposed to account for the evolution of multi-origin/multi-chromosome genomes, which are encountered in modern eukaryotes and archaea. Here we report an example of the generation of a new chromosome in the halophilic archaeon Haloferax volcanii through one of these scenarios: acquisition of new replication origins and splitting of an ancestral chromosome into two replication-competent chromosomes. The multi-origin main chromosome has split into two genome elements via homologous recombination. The newly generated elements possess all the features of bona fide chromosomes. To our knowledge, the spontaneous generation of a new chromosome in prokaryotes without horizontal gene transfer has not been reported previously.