Project description:Enhancing Low-Temperature Nitrification Biofilter with Acinetobacter harbinensis HITLi7T for Efficient Ammonia Nitrogen Removal in One Engineering Application
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone.
2013-08-24 | GSE50164 | GEO
Project description:Low temperature resistant organic pollutant degrading bacteria
Project description:Abstract: Ammonia is one of the most prominent air pollutants in poultry houses. High levels of ammonia have adverse effects on respiratory health, growth performance, meat production of broilers, and breast meat growth and yield are critical important in the broiler industry. To date, studies focus on the negative relationship of ammonia exposure and breast muscle tissue are still very limited, and the underlying molecular mechanisms remain poorly understood. In this study, high concentrations of atmospheric ammonia were found to lower slaughter rate and broiler breast meat yield significantly (P < 0.05). To explore the candidate genes that ammonia regulates breast meat yield of broilers, high throughout RNA-Seq was used to compare the transcriptome of breast muscle with different ammonia exposure (50 ppm vs 3 ppm). In total, 129 differentially expressed genes (DEGs) were identified (P-value < 0.05; fold-change ≥ 2), among which 87 genes were significantly down-regulated and 42 were up-regulated. Bioinformatics analysis suggested that DEGs (such as PDK4, ACSL1, GLUL, FBXO32) were involved in fatty acid degradation/metabolism, nitrogen metabolism, PPAR signaling and adipocytokine signaling pathways. Functional annotation showed that DEGs were mainly enriched in reactive oxygen species metabolic process and muscle contraction. It can be concluded that decreased meat yield was due to the DEGs participating in above biological processes and pathways. This study provides novel insights into transcriptional differences in breast meat between high- and low-ammonia exposed broiler chickens.
Project description:The global transcriptional response of Saccharomyces cerevisiae was investigated in low temperature chemostat cultures grown in carbon or nitrogen limitation. During steady state chemostats, the growth rates and in vivo fluxes were kept constant however the growth-limiting nutrient was significantly higher at 12oC than at 30oC and had significant effects on transcriptional responses. Growth at 12oC resulted in a rearrangement of transporters for the limiting nutrient, where hexose transporters (HXTs) and ammonium permeases (MEPs) were differentially expressed in cultures grown at 30oC in carbon and nitrogen limitations, respectively. In addition, we found repression of genes encoding proteins in reserve carbohydrates metabolism and metabolism of alternative carbon or nitrogen sources other than glucose or ammonia. However, there were also similar responses when the transcriptional response was evaluated regardless of the growth-limiting nutrient. In particular, induction of ribosome biogenesis genes emphasizes the significance of transcription and translational adaptation at low temperature. In contrast, genes encoding proteins during stress response were downregulated. This down-regulation of stress elements better known as environmental stress response (ESR) is in contradiction with previous low temperature transcriptome analyses. During continuous steady state low temperature cultivation, ESR no longer plays an integral role in S. cerevisiae’s response to temperature change. Similarly, trehalose accumulation, consistent with its gene expression, was not indispensable for growth at 12oC. This response, however, does not exclude that ESR may be required for transition phase in low temperature growth when cells are transferred from one temperature to another. Keywords: chemostat temperature 12 degree celsuis 30 degree celsius
2007-01-20 | GSE6190 | GEO
Project description:Feammox Potential Induction of Anammox Bacteria and Synergy with Iron Redox Bacteria for High Efficient Nitrogen Removal
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:Rhizobium etli is a bacteria that fix nitrogen in symbiotic activity with Phaseolus vulgaris, the common bean plant. In order to accomplish this nitrogen reduction a especial environment is induced in nodules such that gene expression of bacteroid suffer a significant change with respect to its wild type life style. With the purpose to identify genetic alterations between these physiological states, replicates of microarray data were accomplished in similar conditions between bacteria cultivated in free-life (succinate-ammonia) and those carrying on nitrogen fixation inside nodule.
Project description:Photosynthetic microbes can produce the clean-burning fuel hydrogen using one of nature’s most plentiful resources, sunlight 1,2. Anoxygenic photosynthetic bacteria generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and consumes nitrogen gas, ATP and electrons 3. One bacterium, Rhodopseudomonas palustris, has a remarkable ability to obtain electrons from green plant-derived material 4,5 and to efficiently absorb both high and low intensity light energy to form ATP 6. Manipulating R. palustris or a similar organism to produce hydrogen commercially will require us to identify all its genes that contribute to hydrogen production and to understand how this process is regulated in cells. Here we describe mutant strains in which metabolism is redirected such that hydrogen production is uncoupled from nitrogen fixation. Our data indicate that three different single amino acid changes in the transcriptional regulator NifA each yielded strains that produced hydrogen even in the presence of the repressing nitrogen source ammonium and in the absence of specific inducing metabolic signals. We used the mutants to show that, in addition to nitrogenase genes, 18 genes outside of the nitrogenase gene cluster may contribute to hydrogen production. Some of these genes are likely involved in efficient ATP acquisition and in channeling electrons to nitrogenase for reduction of protons to molecular hydrogen. Our results demonstrate that photosynthetic bacteria can be genetically manipulated for sustained production of pure hydrogen in a variety of cultivation conditions in the absence of oxygen, nitrogen or other gases as long as light and an electron donor are supplied. Keywords: Comparison of transcriptome profiles