Project description:Light is essential for plant development, but its influence on pathogen virulence and immunity remains poorly understood. Here, we found that the Pseudomonas syringae DC3000 type III effector, AvrPtoB, exhibits virulence exclusively upon light exposure. This light-dependent regulation is controlled by the Arabidopsis transcription factor ELONGATED HYPOCOTYL 5 (HY5), a central regulator of photomorphogenesis. AvrPtoB targets HY5 in the nucleus, facilitating its ubiquitination and degradation. Genetic disruption of HY5 eliminates susceptibility to AvrPtoB and compromises plant immunity upon light exposure. HY5 enhances immunity by binding promoters of defense-related genes, activating their expression, and stabilizing the transcriptional coregulator NONEXPRESSOR OF PATHOGENESIS-RELATED (PR) GENES 1 (NPR1) by inhibiting its negative regulators NPR3/4. Both HY5-mediated immunity and light-dependent AvrPtoB virulence require NPR1. By contrast, during darkness, CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-mediated HY5 degradation suppresses AvrPtoB virulence and HY5-enhanced immunity. These findings elucidate a mechanism in which light modulates bacterial virulence and plant immunity via an HY5-NPR1 module, advancing our understanding of light-pathogen-host interactions.
Project description:Karrikins (KARs) are a class of butenolide molecules found in the smoke of burned plant material that can induce germination of many plant species that emerge after fire. Intriguingly, KAR perception is widely conserved and not limited to fire-followers. For example, germination of dormant Arabidopsis thaliana seeds can also be stimulated by KARs. Additionally, KAR treatment enhances responses of seedlings to light. These responses include inhibition of hypocotyl elongation, enhancement of cotyledon expansion, and transcriptional upregulation of light-responsive genes not only in Arabidopsis but also in Brassica tournefortii. Although the core KAR signaling mechanism, consisting of KAI2-SCF/MAX2-mediated degradation of SMAX1 and SMXL2, is well described, it remains elusive how SMXL degradation leads to downstream growth responses. In this study, we analyse the role of BBX20 in the KAR signaling pathway through both chemical and genetic approaches using knock-out mutants. We find that BBX20, together with its close homologue BBX21, is essential for KAR-induced inhibition of hypocotyl elongation and anthocyanin accumulation. Our detailed genetic analysis suggests that BBX20 and BBX21 act in a HY5-dependent transcriptional module downstream of SMAX1 and SMXL2. While RNA-seq analysis revealed large-scale transcriptional changes in the smax1 smxl2 mutant, our results clearly suggest that BBX20 and BBX21 are required for a subset of SMAX1/SMXL2-dependent transcriptional regulation. Overall, our data suggest that the KAR signaling pathway promotes the activity of the HY5-BBX transcriptional module and that this module represents a point of convergence between KAR and light signaling.
Project description:The goal of the microarray experiment was to determine the induction kinetics of transcriptome changes in the Arabidopsis mutant Atelp2, npr1 and wild type in response to infection of the avirulent bacterial pathogen Pst DC3000/avrRpt2. Results indicated that Atelp2 exhibited slower kinetcis of transcriptional changes than the wild type after Pst DC3000/avrRpt2 infection, whereas npr1 did not show significant alteration in the induction kinetics.
Project description:To investigate the mechanism of NPR1 regulating vascular function, we established NPR1 knockout heterozygous mice by CRISPR-Cas9. We performed high-throughput RNA sequencing to analyse the transcriptom of the aorta of NPR1 knocout heterogeneous mice.
Project description:We show that longer-term inhibition of shade avoidance in Arabidopsis is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) which, together, regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification.
Project description:Genome-wide direct targets of Arabidopsis NPR1 and HAC1 were identified by chromain immunoprecipitation followed by sequencing (ChIP-seq). For the study, we used Arabidopsis expressing NPR1:GFP or HAC1:mCherry under native NPR1 or HAC1 promoter, respectively. To identify direct targets both under salicylic acid-treated and untreated conditions, we performed ChIP-seq by using 2,6-dichloroisonicotinc acid (INA; synthetic SA analog)-treated and untreated NPR1:GFP or HAC1:mCherry transgenic Arabidopsis plants.
Project description:Nonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.
Project description:Light is a major determinant of plant growth and survival. NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) acts as a receptor for salicylic acid (SA) and serves as the key regulator of SA-mediated immune responses. However, the mechanisms by which plants integrate light and SA signals in response to environmental changes, as well as the role of NPR1 in regulating plant photomorphogenesis, remain poorly understood. This study shows that SA promotes plant photomorphogenesis by regulating PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Specifically, NPR1 promotes photomorphogenesis under blue light by facilitating the degradation of PIF4 through light-induced polyubiquitination. NPR1 acts as a substrate adaptor for the CULLIN3-based E3 ligase, which ubiquitinates PIF4 at Lys129, Lys252, and Lys428, and leading to PIF4 degradation via the 26S proteasome pathway. Genetically, PIF4 is epistatic to NPR1 in the regulation of blue light-–induced photomorphogenesis, suggesting it acts downstream of NPR1. Furthermore, cryptochromes mediate the polyubiquitination of PIF4 by NPR1 in response to blue light by promoting the interaction and ubiquitination between NPR1 and PIF4. Transcriptome analysis revealed that, under blue light, NPR1 and PIF4 coordinately regulate numerous downstream genes related to light and auxin signaling pathways. Overall, these findings unveil a role for NPR1 in photomorphogenesis, highlighting a mechanism for post-translational regulation of PIF4 in response to blue light. This mechanism plays a pivotal role in the fine-tuning of plant development, enabling plants to adapt to complex environmental changes.