Project description:Based on fuzzy logic selection and classification algorithms, our selection method measures the contribution of each gene for each of two pre-defined classes in order to find the best discrimination. This algorithm extracts and ranks the most pertinent markers, since it is based on feature weighting according to optimal error rate, sensitivity and specificity. We applied the fuzzy logic selection on four breast cancer microarray databases to obtain new gene signatures based on histological grade. To validate these gene signatures, we designed probes for the selected genes on Nimblegen custom microarrays and tested them on a series of 151 consecutive invasive breast carcinomas displaying clinicopathological features similar to those observed in routine practice.
Project description:BackgroundMethane yield and biogas productivity of biogas plants (BGPs) depend on microbial community structure and function, substrate supply, and general biogas process parameters. So far, however, relatively little is known about correlations between microbial community function and process parameters. To close this knowledge gap, microbial communities of 40 samples from 35 different industrial biogas plants were evaluated by a metaproteomics approach in this study.ResultsLiquid chromatography coupled to tandem mass spectrometry (Orbitrap Elite™ Hybrid Ion Trap-Orbitrap Mass Spectrometer) of all 40 samples as triplicate enabled the identification of 3138 different metaproteins belonging to 162 biological processes and 75 different taxonomic orders. The respective database searches were performed against UniProtKB/Swiss-Prot and seven metagenome databases. Subsequent clustering and principal component analysis of these data allowed for the identification of four main clusters associated with mesophile and thermophile process conditions, the use of upflow anaerobic sludge blanket reactors and BGP feeding with sewage sludge. Observations confirm a previous phylogenetic study of the same BGP samples that was based on 16S rRNA gene sequencing by De Vrieze et al. (Water Res 75:312-323, 2015). In particular, we identified similar microbial key players of biogas processes, namely Bacillales, Enterobacteriales, Bacteriodales, Clostridiales, Rhizobiales and Thermoanaerobacteriales as well as Methanobacteriales, Methanosarcinales and Methanococcales. For the elucidation of the main biomass degradation pathways, the most abundant 1 % of metaproteins was assigned to the KEGG map 1200 representing the central carbon metabolism. Additionally, the effect of the process parameters (i) temperature, (ii) organic loading rate (OLR), (iii) total ammonia nitrogen (TAN), and (iv) sludge retention time (SRT) on these pathways was investigated. For example, high TAN correlated with hydrogenotrophic methanogens and bacterial one-carbon metabolism, indicating syntrophic acetate oxidation.ConclusionsThis is the first large-scale metaproteome study of BGPs. Proteotyping of BGPs reveals general correlations between the microbial community structure and its function with process parameters. The monitoring of changes on the level of microbial key functions or even of the microbial community represents a well-directed tool for the identification of process problems and disturbances.Graphical abstractCorrelation between the different orders and process parameter, as well as principle component analysis of all investigated biogas plants based on the identified metaproteins.
Project description:Biogas production through the anaerobic digestion (AD) of organic waste plays a crucial role in promoting sustainability and closing the carbon cycle. Over the past decade, this has driven global research on biogas-producing microbiomes, leading to significant advances in our understanding of microbial diversity and metabolic pathways within AD plants. However, substantial knowledge gaps persist, particularly in understanding the specific microbial communities involved in biogas production in countries such as South Korea. The present dataset addresses one of these gaps by providing comprehensive information on the metagenomes of five full-scale mesophilic biogas reactors in South Korea. From 110 GB of raw DNA sequences, 401 metagenome-assembled genomes (MAGs) were created, which include 42,301 annotated genes. Of these, 187 MAGs (46.7%) were classified as high-quality based on Minimum Information about Metagenome-Assembled Genome (MIMAG) standards. The data presented here contribute to a broader understanding of biogas-specific microbial communities and offers a significant resource for future studies and advancements in sustainable biogas production.
Project description:BackgroundPlant cell walls represent the most plentiful renewable organic resource on earth, but due to their heterogeneity, complex structure and partial recalcitrance, their use as biotechnological feedstock is still limited.ResultsIn order to identify efficient enzymes for polysaccharide breakdown, we have carried out functional screening of metagenomic fosmid libraries from biogas fermenter microbial communities grown on sugar beet pulp, an arabinan-rich agricultural residue, or other sources containing microbes that efficiently depolymerize polysaccharides, using CPH (chromogenic polysaccharide hydrogel) or ICB (insoluble chromogenic biomass) labeled polysaccharide substrates. Seventy-one depolymerase-encoding genes were identified from 55 active fosmid clones by using Illumina and Sanger sequencing and dbCAN CAZyme (carbohydrate-active enzyme) annotation. An around 56 kb assembled DNA fragment putatively originating from Xylanivirga thermophila strain or a close relative was analyzed in detail. It contained 48 ORFs (open reading frames), of which 31 were assigned to sugar metabolism. Interestingly, a large number of genes for enzymes putatively involved in degradation and utilization of arabinose-containing carbohydrates were found. Seven putative arabinosyl hydrolases from this DNA fragment belonging to glycoside hydrolase (GH) families GH51 and GH43 were biochemically characterized, revealing two with endo-arabinanase activity and four with exo-α-L-arabinofuranosidase activity but with complementary cleavage properties. These enzymes were found to act synergistically and can completely hydrolyze SBA (sugar beet arabinan) and DA (debranched arabinan).ConclusionsWe screened 32,776 fosmid clones from several metagenomic libraries with chromogenic lignocellulosic substrates for functional enzymes to advance the understanding about the saccharification of recalcitrant lignocellulose. Seven putative X. thermophila arabinosyl hydrolases were characterized for pectic substrate degradation. The arabinosyl hydrolases displayed maximum activity and significant long-term stability around 50 °C. The enzyme cocktails composed in this study fully degraded the arabinan substrates and thus could serve for arabinose production in food and biofuel industries.
Project description:Based on fuzzy logic selection and classification algorithms, our selection method measures the contribution of each gene for each of two pre-defined classes in order to find the best discrimination. This algorithm extracts and ranks the most pertinent markers, since it is based on feature weighting according to optimal error rate, sensitivity and specificity. We applied the fuzzy logic selection on four breast cancer microarray databases to obtain new gene signatures based on histological grade. To validate these gene signatures, we designed probes for the selected genes on Nimblegen custom microarrays and tested them on a series of 151 consecutive invasive breast carcinomas displaying clinicopathological features similar to those observed in routine practice. 151 frozen breast cancer tumors from the tumor bank of the Claudius Regaud Institute (ICR Toulouse, France) were selected. This cohort consisted of consecutive invasive breast carcinoma patients treated at Claudius Regaud Institute between 2009 and 2011. All patients included in this cohort signed an informed consent. Clinico-pathological characteristics of the series were similar to those observed in routine clinical practice (i.e. majority of pre-menopausal patients presenting with T1c, node negative, ER+ invasive ductal carcinoma of intermediate grade).
Project description:ObjectivesThe genus Bacillus comprises spore-forming rod-shaped Gram-positive bacteria, which usually grow aerobically or anaerobically. Members of this genus are common environmental microorganisms. Also, they can be monitored in the food production chain. Genome sequence of Bacillus sp. strain EE-W1 will provide helpful information to understand its ecology and genetics. Draft genome data may be useful in the field of using Bacillus species in industrial biotechnology. Also, these data can be a useful resource for the study of comparative genomics.Data descriptionHere, we present the draft genome sequence of Bacillus sp. strain EE-W1 isolated from a biogas reactor, Kazan, Russia. The assembled genome size was 5,769,164 bp, with a GC content 35.1%. This draft genome data can be accessed at DDBJ/ENA/GenBank under the accession WIPE00000000.