Project description:We applied metagenomic shotgun sequencing to investigate the effects of ZEA exposure on the change of mouse gut microbiota composition and function.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:The gut microbiota plays an important role in host health. Microbiota dysbiosis has been implicated in the global epidemic of Metabolic Syndrome (MetS) and could impair host metabolism by noxious metabolites. It has been well established that the gut microbiota is shaped by host immune factors. However, the effect of T cells on the gut microbiota is yet unknown. Here, we performed a metagenomic whole-genome shotgun sequencing (mWGS) study of the microbiota of TCRb-/- mice, which lack alpha/beta T cells.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:The TransplantLines Gut Microbiome study includes raw data generated by shotgun metagenomic sequencing of fecal samples of solid organ transplant recipients and basic phenotypes (age and sex, BMI).
Project description:The role of gut microbiome dysbiosis in the pathogenesis of psoriasis has gained increasing attention in recent years. Secukinumab, targeting interleukin (IL)-17, has a promising efficacy in psoriasis treatment. However, it remains unclear the gut microbiota alteration and related functional changes caused by successful secukinumab therapy in psoriatic patients. In our study, we compared fecal microbiome profile between psoriatic patients after secukinumab successful treatment (AT) and the other two groups, psoriatic patients without therapy (BT) and healthy people (H), respectively by using next-generation sequencing targeting 16S ribosomal RNA. Then, shotgun metagenomic sequencing was firstly used to characterize bacterial gut microbial communities and related functional change in AT group. We found that the diversity and structure of the microbial community in AT group were significantly changed compared to that of BT group and H group. AT group showed a microbiota profile characterized by increased proportions of the phylum Firmicute, families Ruminococcaceae, and a reduction in the phylum Bacteroidota (elevated F/B ratio). To detect functional alteration, we discovered that secukinumab treatment may construct a more stable homeostasis of gut microbiome with functional alteration. There were different KEGG pathways such as downregulated cardiovascular diseases pathway and upregulated infectious diseases in AT group. By metagenomic analysis, metabolic functional pathway was changed after secukinumab therapy. It seems that gut microbiota investigation during biologic drug treatment is useful for predicting the efficacy and risks of drug treatment in disease.
Project description:The role of gut microbiome dysbiosis in the pathogenesis of psoriasis has gained increasing attention in recent years. Secukinumab, targeting interleukin (IL)-17, has a promising efficacy in psoriasis treatment. However, it remains unclear the gut microbiota alteration and related functional changes caused by successful secukinumab therapy in psoriatic patients. In our study, we compared fecal microbiome profile between psoriatic patients after secukinumab successful treatment (AT) and the other two groups, psoriatic patients without therapy (BT) and healthy people (H), respectively by using next-generation sequencing targeting 16S ribosomal RNA. Then, shotgun metagenomic sequencing was firstly used to characterize bacterial gut microbial communities and related functional change in AT group. We found that the diversity and structure of the microbial community in AT group were significantly changed compared to that of BT group and H group. AT group showed a microbiota profile characterized by increased proportions of the phylum Firmicute, families Ruminococcaceae, and a reduction in the phylum Bacteroidota (elevated F/B ratio). To detect functional alteration, we discovered that secukinumab treatment may construct a more stable homeostasis of gut microbiome with functional alteration. There were different KEGG pathways such as downregulated cardiovascular diseases pathway and upregulated infectious diseases in AT group. By metagenomic analysis, metabolic functional pathway was changed after secukinumab therapy. It seems that gut microbiota investigation during biologic drug treatment is useful for predicting the efficacy and risks of drug treatment in disease.
Project description:Lean nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a distinct clinical phenotype with limited evidence for effective non-pharmacological interventions and unclear mechanistic pathways. Aerobic exercise is recommended for NAFLD management; however, its effects and the gut microbiota–associated mechanisms in lean NAFLD remain incompletely understood. This dataset was generated from a randomized controlled trial (ClinicalTrials.gov identifier: NCT04882644). Participants assigned to the aerobic exercise intervention group provided fecal samples at baseline and after the 3-month intervention. A total of 33 paired fecal samples were included in this dataset. Gut microbiota profiles were generated using shotgun metagenomic sequencing. The dataset includes processed and de-identified species-level relative abundance tables derived from fecal samples collected before and after the intervention. These data were used to characterize exercise-induced alterations in gut microbial composition and interindividual variability in microbiota responses to aerobic exercise in lean NAFLD. The data support integrative analyses with clinical phenotypes and circulating metabolomic profiles to explore gut microbiota–associated mechanisms underlying the metabolic benefits of aerobic exercise.