Project description:Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/- mice and cells, both of which exhibited dramatic mitochondrial changes. Subsequently, WBSCR16 was identified as a 16S rRNA-binding protein essential for the cleavage of 16S rRNA-mt-tRNALeu, facilitating 16S rRNA processing and mitochondrial ribosome assembly. Additionally, WBSCR16 recruited RNase P subunit MRPP3 to nascent 16S rRNA and assisted in this specific cleavage. Furthermore, evidence showed that adipose-specific Wbscr16 ablation promotes energy wasting via lipid preference in brown adipose tissue, leading to excess energy expenditure and resistance to obesity. In contrast, overexpression of WBSCR16 upregulated 16S rRNA processing and induced a preference for glucose utilization in both transgenic mouse models and cultured cells. These findings suggest that WBSCR16 plays essential roles in mitochondrial 16S rRNA processing in mammals, and is the key mitochondrial protein to balance glucose and lipid metabolism.
2024-12-30 | GSE229693 | GEO
Project description:GPR study mouse gut shotgun metagenomic reads
Project description:A phylogenetic microarray targeting 66 families described in the human gut microbiota has been developped aud used to monitor the gut microbiota's structure and diversity. The microarray format provided by Agilent and used in this study is 8x15K. A study with a total of 4 chips was realized. Arrays 1 and 2: Hybridization with 100ng of labelled 16S rRNA gene amplicons from a mock community sample and 250ng of labelled 16S rRNA gene amplicons from 1 faecal sample. Each Agilent-030618 array probe (4441) was synthetized in three replicates. Arrays 3 and 4: Hybridization with 250ng of labelled 16S rRNA gene amplicons from 2 faecal samples. Each Agilent-40558 array probe (4441) was synthetized in three replicates.
Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction A ten chip study using PCR amplicons from cloned 16S rRNA genes and from diverse soil 16S rRNAs, with PCR primers specific to the Division Acidobacteria. Each chip measures the signal from 42,194 probes (in triplicate) targeting Acidobacteria division, subdivision, and subclades as well as other bacterial phyla. All samples except one (GSM464591) include 2.5 M betaine in the hybridization buffer. Pair files lost due to a computer crash.
Project description:The impact of mono-chronic S. stercoralis infection on the gut microbiome and microbial activities in infected participants was explored. The 16S rRNA gene sequencing of a longitudinal study with 2 sets of human fecal was investigated. Set A, 42 samples were matched, and divided equally into positive (Pos) and negative (Neg) for S. stercoralis diagnoses. Set B, 20 samples of the same participant in before (Ss+PreT) and after (Ss+PostT) treatment was subjected for 16S rRNA sequences and LC-MS/MS to explore the effect of anti-helminthic treatment on microbiome proteomes.
Project description:We examined 36 biopsies taken from digital dermatitis lesions of Holstein cows. The target was the V3 -V4 variable region of 16S rRNA using Treponema specific primers. We identified 20 different taxa of Treponema using this approach. Phylogenetic study of the Treponema taxa found in digital dermatitis lesions of Holstein cows.
Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:We found that mainstream cigarette smoking (4 cigarettes/day, 5 days/week for 2 weeks using Kentucky Research Cigarettes 3R4F) resulted in >20% decrease in the percentage of normal Paneth cell population in Atg16l1 T300A mice but showed minimal effect in wildtype littermate control mice, indicating that Atg16l1 T300A polymorphism confers sensitivity to cigarette smoking-induced Paneth cell damage. We performed 16S rRNA sequencing to identify potential microbiota changes associated with Paneth cell defect in Atg16l1 T300A mice exposed to cigarette smoking. Female mice were used at 4-5 weeks of age. Cigarette smoking was performed using smoking chamber with the dosage and schedule as described above. The fecal samples from the mice were collected for 16S rRNA sequencing analysis after completing 6 weeks of smoking.