Project description:Comparison of hexachlorocyclohexane (HCH) contaminated soils from Spain with a community-specific microarray. These results are being submitted for publication and represent the first use of microarrays for analysis of soil DNA and the first community-specific microarray design. Keywords: other
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years
Project description:Comparison of hexachlorocyclohexane (HCH) contaminated soils from Spain with a community-specific microarray. These results are being submitted for publication and represent the first use of microarrays for analysis of soil DNA and the first community-specific microarray design. Keywords: other
Project description:Metabolomics is a powerful approach that allows for high throughput analysis and the acquisition of large biochemical data. Nonetheless, it still faces several challenging requirements, such as the development of optimal extraction and analytical methods able to respond to its high qualitative and quantitative requisites. Hence, the objective of the present article is to suggest a LC-HRMS-based untargeted profiling approach aiming to provide performant tools that help assess the performance and the quality of extraction methods. It is applied in a herbicide-contaminated soil metabolomics context. The trifactorial experimental design consists of 150 samples issued from five different extraction protocols, two types of soils, and three contamination conditions (contaminated soils with two different formulated herbicides against uncontaminated soils). Four performance and quality criteria are investigated using adapted LC-HRMS-driven computational tools. First, 861 metabolic features are annotated, and then the width of metabolome coverage and quantitative performance of the five different extraction protocols are assessed in all samples using various optimized configurations of heatmaps as well as van Krevelen diagrams. Then, the reproducibility of LC-HRMS profiles issued from the five extractions is studied by two different approaches: Euclidean distances and relative standard deviations. The two methods are examined and compared. Their advantages and limitations are thus discussed. After, the capacity of the different extractions to discriminate between contaminated and uncontaminated soils will be evaluated using orthogonal projections to latent structures-discriminant analysis. Different data scaling parameters are tested, and the results are explored and discussed. All of the suggested computational and visualization tools are performed using public-access platforms or open-source software. They can be readapted by metabolomics developers and users according to their study contexts and fields of application.
Project description:A DNA microarray analysis detected large-scale changes of gene expression in response to Cd stress with a substantial difference between the two barley genotypes differing in Cd tolerance and accumulation. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd accumulation. We used microarrays to understand the mechanism of low Cd accumulation in crops which is crucial for sustainable safe food production in Cd-contaminated soils.