Project description:Transcriptome response of the yeasts C. glabrata and S. cerevisiae treated by an antifungal agent, benomyl Keywords: time course; stress response
Project description:Accurate chromosome segregation requires centromeres (CENs), the chromosomal sites where kinetochores form, to bridge DNA and attach to microtubules. In contrast to most eukaryotes, Saccharomyces cerevisiae possesses sequence-defined point centromeres. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of four kinetochore components reveals regions of overlapping, extra-centromeric protein localization upon overproduction of the centromeric histone, Cse4 (CENP-A or CenH3). These identified sequences enhance proper plasmid and chromosome segregation, and are termed Centromere-like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of point and regional centromeres. CLR sequences are conserved among related budding yeasts, suggesting a role in vivo. These studies provide new insights into the origin and evolution of centromeres. ChIP-Seq analysis of the kinetochore components Cse4, Mif2, Ndc10 and Ndc80 in budding yeast strains (Saccharomyces cerevisiae) with normal and elevated levels of Cse4
Project description:Transcriptome response of the yeasts C. glabrata and S. cerevisiae treated by an antifungal agent, benomyl Keywords: time course; stress response We performed microarray analyses of the transcriptome response of the yeasts Candida glabrata and Saccharomyces cerevisiae, treated by an antifungal agent, benomyl. The C. glabrata cells were submitted to 20 μg/mL of benomyl for 2, 4, 10, 20, 40 and 80 minutes. The labelled cDNA from treated cells were competitively hybridized on microarrays versus cDNA from mock treated cells.