Project description:Morphine causes microbial dysbiosis. In this study we focused on restoration of native microbiota in morphine treated mice and looked at the extent of restoration and immunological consequences of this restoration. Fecal transplant has been successfully used clinically, especially for treating C. difficile infection2528. With our expanding knowledge of the central role of microbiome in maintenance of host immune homeostasis17, fecal transplant is gaining importance as a therapy for indications resulting from microbial dysbiosis. There is a major difference between fecal transplant being used for the treatment of C. difficile infection and the conditions described in our studies. The former strategy is based on the argument that microbial dysbiosis caused by disproportionate overgrowth of a pathobiont can be out-competed by re-introducing the missing flora by way of a normal microbiome transplant. This strategy is independent of host factors and systemic effects on the microbial composition. Here, we show that microbial dysbiosis caused due to morphine can be reversed by transplantation of microbiota from the placebo-treated animals.
Project description:Microbiome analysis has relied largely on metagenomics to characterize microbial populations and predict their functions. Here, we used a TMT LC-MSMS metaproteomic analysis of the fecal microbiome in piglets before and after weaning to compare protein abundances as they pertain to microbial populations specific to either a milk- or plant-based diet. Fecal samples were collected from six piglets on the day of weaning and four weeks after transitioning to a standard nursery diet. Using the 12,554 protein groups identified in samples, we confirmed the shift in protein composition that takes place in response to the microbial succession following weaning and demonstrated the redundancy in metabolic processes between taxa. We identified taxa with roles as primary degraders based on corresponding proteins synthesized, thereby providing evidence for cross-feeding. Proteins associated with the breakdown of milk-specific carbohydrates were common among pre-weaned pigs, whereas the proteome of post-weaned piglets contained a greater abundance of proteins involved in the breaking down plant-specific carbohydrates. Furthermore, output revealed that production of propionate takes place via the propionaldehyde pathway in pre-weaned piglets, but changes to production via the succinate pathway in post-weaned piglets. Finally, a disproportionate quantity of carbohydrate-active enzymes (CAZymes) (~8%) were produced by fungi, which typically only represent ~0.1% of the microbiome taxa. Information gathered through this characterization of the metaproteome before and after weaning revealed important differences regarding the role of members in the microbial community, thereby providing information for the optimization of diets and products for both piglet and microbiome health.
Project description:Alterations in intestinal microbiota and intestinal short chain fatty acids profiles have been associated with the pathophysiology of obesity and insulin resistance. Whether intestinal microbiota dysbiosis is a causative factor in humans remains to be clarified We examined the effect of fecal microbial infusion from lean donors on the intestinal microbiota composition, glucose metabolism and small intestinal gene expression. Male subjects with metabolic syndrome underwent bowel lavage and were randomised to allogenic (from male lean donors with BMI<23 kg/m2, n=9) or autologous (reinfusion of own feces, n=9) fecal microbial transplant. Insulin sensitivity and fecal short chain fatty acid harvest were measured at baseline and 6 weeks after infusion. Intestinal microbiota composition was determined in fecal samples and jejunal mucosal biopsies were also analyzed for the host transcriptional response. Insulin sensitivity significantly improved six weeks after allogenic fecal microbial infusion (median Rd: from 26.2 to 45.3 μmol/kg.min, p<0.05). Allogenic fecal microbial infusion increased the overall amount of intestinal butyrate producing microbiota and enhanced fecal harvest of butyrate. Moreover, the transcriptome analysis of jejunal mucosal samples revealed an increased expression of genes involved in a G-protein receptor signalling cascade and subsequently in glucose homeostasis. Lean donor microbial infusion improves insulin sensitivity and levels of butyrate-producing and other intestinal microbiota in subjects with the metabolic syndrome. We propose a model wherein these bacteria provide an attractive therapeutic target for insulin resistance in humans. (Netherlands Trial Register NTR1776).
Project description:Microbial RNAseq analysis of cecal and fecal samples collected from mice colonized with the microbiota of human twins discordant for obesity. Samples were colleted at the time of sacrifice, or 15 days after colonization from mice gavaged with uncultured or cultured fecal microbiota from the lean twins or their obese co-twins. Samples were sequenced using Illumina HiSeq technology, with 101 paired end chemistry. Comparisson of microbial gene expression between the microbiota of lean and obese twins fed a Low fat, rich in plant polysaccharide diet.
Project description:We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. The relationship between changes in bacterial flora and the prognosis of spontaneous cerebral hemorrhage was studied in two cohort studies. Fecal samples from healthy volunteers and patients with intracerebral hemorrhage were subjected to 16S rRNA sequencing at three time points: T1 (within 24 hours of admission), T2 (3 days post-surgery), and T3 (7 days post-surgery) using Illumina high-throughput sequencing technology.
Project description:We recruited 24 Mongolian volunteers,6 of which were T2D cases(sample T1-T6), 6 were prediabetes cases(sample P1-P6), and 12 were health cases(sample C1-C12). The metagenomic analysis of gut microbiota from the volunteers’ fecal samples was performed. We compared the microbial differences in the three groups, and analyzed the differences of the stool microbial function.
Project description:To investigate the effect of soy peptides on gut microial composition during juvenile social isolation, group-house (GH) and social isolation (SI) mice were fed a diet consisting of soy peptides or a control diet for 4 weeks post-weaning. We then performed microbial community analysis using data obtained from bacterial 16S rRNA gene sequencing in the fecal samples of 4 mice groups (control diet-fed GH, soy peptide-diet fed GH, control diet-fed SI, and soy peptide-diet fed SI mice).
Project description:Complex oligosaccharides found in human milk play a vital role in gut microbiome development for the human infant. Bovine milk oligosaccharides (BMO) have similar structures with those derived from human milk, but have not been well studied for their effects on the healthy adult human gut microbiome. Healthy human subjects consumed BMO over two-week periods at two different doses and provided fecal samples. Metatranscriptomics of fecal samples was conducted to determine microbial and host gene expression in response to the supplement. Fecal samples were also analyzed by mass spectrometry to determine levels of undigested BMO. No changes were observed in microbiome activity across all participants. Repeated sampling enabled subject-specific analyses: four of six participants had minor, yet statistically significant, changes in microbial activity. No significant change was observed in the gene expression of host cells in stool. Levels of BMO excreted in feces after supplementation were not significantly different from placebo and were not correlated with dosage or expressed microbial enzyme levels. Collectively, these data suggest that BMO is fully digested in the human gastrointestinal tract prior to stool collection. Participants’ gut microbiomes remained stable but varied between individuals. Additionally, the unaltered host transcriptome provides further evidence for the safety of BMO as a dietary supplement or food ingredient.