Project description:The direct photosynthetic production of polyhydroxyalkanoate in cyanobacteria was improved by increasing carbon flux to biosynthetic pathway and introducing enzyme with higher activity. To understand the global transcriptional changes under photoautotrophic PHA biosynthesis conditions, RNA-seq analysis was performed.
Project description:The direct photosynthetic production of polyhydroxyalkanoate in cyanobacteria was improved by increasing carbon flux to biosynthetic pathway and introducing enzyme with higher activity. To understand the global transcriptional changes under photoautotrophic PHA biosynthesis conditions, RNA-seq analysis was performed. Transcriptomes of recombinant Synechocystis sp. with different PHA-producing potential (three strains, two biological replicates for each strain) were analyzed.
Project description:Phasin PhaF is a multifunctional protein associated with the surface of polyhydroxyalkanoate (PHA) granules (carbonosomes) that contributes significantly to PHA biogenesis in pseudomonads. PhaF participates in PHA granule stabilization and segregation and its deletion has a notable impact on overall transcriptome, PHA accumulation and cell physiology, suggesting a more extensive function than simply being a simply granule structural protein. We followed a systematic approach to detect potential interactions of PhaF with other components of the cell, which could pinpoint unexplored functions of PhaF in the regulation of PHA production. We determined the PhaF interactome in Pseudomonas putida KT2440 using pull-down-mass spectrometry (PD-MS), in which proteins interacting with PhaF were determined. We separately determined the PHA granule proteome (all proteins associated with PHA granules) in Pseudomonas putida KT2440 using two granule preparation methods.
2021-09-09 | PXD018787 | Pride
Project description:Strategies to reduce the environmental lifetimes of drinking straws in the coastal ocean
Project description:Pseudomonas putida KT2440 is an important bioplastic-producing industrial microorganism capable of synthesizing the polymeric carbon-rich storage material, polyhydroxyalkanoate (PHA). PHA is sequestered in discrete PHA granules, or carbonosomes, and accumulates under conditions of stress, for example low levels of available nitrogen. The pha locus responsible for PHA metabolism encodes both anabolic and catabolic enzymes, a transcription factor, and carbonosome-localized proteins termed phasins. The functions of phasins are incompletely understood but genetic disruption of their function causes PHA-related phenotypes. To improve our understanding of these proteins, we investigated the PHA pathways of P.putida KT2440 using three types of experiment. First, we profiled cells grown in nitrogen-limited and nitrogen-excess media using global expression proteomics, identifying sets of proteins found to co-ordinately increase or decrease within clustered pathway. Next, we analysed the protein composition of isolated carbonosomes, identifying two new putative components. We carried out physical interaction screens focused on PHA-related proteins, generating a protein-protein network comprising 434 connected proteins. Finally, we confirmed that the outer membrane protein OprL (the Pal component of the Pal-Tol system) localizes to the carbonosome and shows a PHA-related phenotype, and therefore is a novel phasin. The combined datasets represent a valuable overview of the protein components of the PHA system in P.putida highlighting the complex nature of regulatory interactions responsive to nutrient stress.
Project description:Bradyrhizobium diazoefficiens can live inside soybean root nodules and in free-living conditions. In both states, when oxygen levels decrease, cells adjust their protein pools by gene transcription modulation. PhaR encodes a transcription factor annotated as PHA (polyhydroxyalkanoate) accumulation regulator. We found that PhaR not only controls the PHA cycle but also acts as a global regulator of excess carbon allocation by controlling the expression of fixK2 and nifA genes, both encoding key transcription factors for microoxic and symbiotic metabolism in B. diazoefficiens. The function of PhaR was expanded by a multi-pronged approach that includes analysis of the effects of phaR mutation at transcriptional and protein levels of putative PhaR targets and direct control mediated by PhaR determined by EMSA assays. We also were able to identify PhaR, phasins and other proteins associated with PHA granules which confirmed a global function of PhaR in microoxia.
Project description:Transcriptomics analysis of biopolymer (medium chain length polyhydroxyalkanoate) producing strain P.putida LS46 cultured with biodiesel derived waste carbon sources: studies of cellular adaptation to the industrial waste streams and metabolic profiling under the polymer producing conditions. We are reporting RNAseq analysis data here as part of our multi-level Omics study of medium chain length polyhydroxyalkanoate (mcl-PHA) producing strain P.putida LS46 culture with biodiesel derived waste glycerol and waste fatty acids. The data presented here will be used in two separate manuscripts. The objectives of this study are a): to evaluate cellular responses of P.putida LS46 under industrial waste stream. b): to study gene expression profile under two selected mcl-PHA producing conditions of P.putida LS46. Comparative multi-level Omics study: for objective a): Exponential P.putida LS46 cell from waste glycerol culture compared against reagent grade pure glycerol culture. For objective b): Two mcl-PHA producing conditions, namely stationary phase waste glycerol culture and exponential phase waste fatty acid culture of P.putida LS46, were compared against exponential phase waste glycerol culture of P.putida LS46. Major results from objective a): The waste glycerol substrate induced expression of a large number of genes putatively involved in heavy metal tolerance, including three gene clusters: a putative cusABC transcript unit and two copies of copAB, which are usually involved in copper resistance and tolerance to other monovalent heavy metals. A local gene relocation was observed in cluster 1 consisting cusABC and copAB relative to the KT2440 type strain according to the phylogenetic and gene neighbourhood analyses on various P. putida strains. P. putida LS46 also contains 11 putative MerR family regulators, which sense various environmental stimuli including heavy metals. MerR-1 is an ortholog of the copper response regulator of other gram-negative bacteria, and was highly up-regulated in waste glycerol cultures. Finally, a number of genes involved in cell responses to high extra-cellular Na+ concentrations, and genes of the fatty acid beta-oxidation pathway were up-regulated in waste glycerol cultures Major results from objective b): Regardless to the type of substrates, up-regulation of two mcl-PHA synthase (PhaC1 and PhaC2), and two phasin proteins (PhaF and PhaI) are the most common genotype under mcl-PHA production conditions. PhaG and possible PhaJ4 connect fatty acid de novo synthesis to mcl-PHA in waste glycerol culture. Interestingly, expression of gene, fabZ, in production of unsaturated fatty acid from fatty acid de novo synthesis was only observed in waste glycerol culture. On the other hand, PhaJ1 and PhaJ4 derived mcl-PHA production via fatty acid beta-oxidation was observed under waste fatty acid culture. These results would help to explain observed different production kinetics and monomer distribution of the polymer. Although under active mcl-PHA production condition, depression on the expression of glpF genes in glycerol transportation system prevent further channelling extra-cellular glycerol into the cell. Waste glycerol culture also triggers trahalose synthesis pathway, a potential competing pathway during mcl-PHA synthesizing. In waste fatty acid culture, the intermediates (acyl-CoA and 3-hydroxyacyl-CoA) of fatty acid beta-oxidation were used for mcl-PHA production and were also likely hydrolysed to their free acid forms via an up-regulated thioesteras coding gene, tesA. Acetyl-CoA cleaved from the pathway was clearly channeled into glyoxylate shut for C2 carbon assimilation over spillage as CO2 through TCA cycle or used in fatty acid biosynthesis pathway.
Project description:The thermophilic filamentous fungi Myceliophthora thermophila (Sporotrichum thermophile) has an ability to decompose cellulolytic biomass. To identify the genes and proteins involved in this process, we explored the transcriptomes of M. thermophila grown at 45 °C on different agricultural straws (oat, triticale, canola, flax straws).