Project description:The Manila clam (Ruditapes philippinarum) is a cultured bivalve species with high worldwide commercial importance. Nevertheless, diseases can cause high economical losses. For this reason, the study of immune genes in bivalve mollusks has increased in the last years. The present work describes the construction of the first R. philippinarum microarray containing immune-related hemocyte sequences and its application for the study of the gene transcription profiles of hemocytes from clams challenged with Vibrio alginolyticus through a time course.
Project description:To have a better understanding of other factors that could lead to the prevention or reduction of vibriosis, it is necessary to take a holistic view and consider interactions between Vibrio parahaemolyticus, the environment, marine microbiota and its transient or permanent host, bivalve molluscs. The aim of this study was to determine the effect of abiotic and biotic factors and their interactions on the abundance of V. parahaemolyticus in its natural habitat.
Project description:The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest world production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum–P. olseni interaction, we analyzed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid to understand the response and interaction between R. philippinarum–P. olseni and will contribute for developing effective control strategies for this threatening parasitosis.
Project description:The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest world production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum–P. olseni interaction, we analyzed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid to understand the response and interaction between R. philippinarum–P. olseni and will contribute for developing effective control strategies for this threatening parasitosis.
Project description:The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest world production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum–P. olseni interaction, we analyzed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid to understand the response and interaction between R. philippinarum–P. olseni and will contribute for developing effective control strategies for this threatening parasitosis.
Project description:The Manila clam (Ruditapes philippinarum) is a cultured bivalve species with high worldwide commercial importance. Nevertheless, diseases can cause high economical losses. For this reason, the study of immune genes in bivalve mollusks has increased in the last years. The present work describes the construction of the first R. philippinarum microarray containing immune-related hemocyte sequences and its application for the study of the gene transcription profiles of hemocytes from clams challenged with Vibrio alginolyticus through a time course. A comparative analysis of gene expression was conducted between R. philippinarum infected and non-infected by V. alginolyticus clam hemocytes. Clams (n=100) were notched in the shell next to the adductor muscles and injected with 100 µl of Vibrio alginolyticus, strain TA15, (10^8 UFC/ml in PBS) to mimic an intramuscular infection. Controls (n=100) were injected with 100 µl of PBS. After stimulation, clams were returned to the tanks and maintained at 15ºC until sampling at 3, 8, 24, and 72 hours after challenge Hemolymph (1 ml) was withdrawn from the adductor muscle of the clams with a 0.5mm diameter (25G) disposable needle. Hemolymph from four individuals was pooled and biological replicates were taken at each sampling point. Hemolymph was centrifuged at 4°C at 3000 g for 10 minutes. The pellet was resuspended in 250 µl of Trizol (Invitrogen). Total RNA isolation was conducted following the manufacturer's specifications in combination with the RNeasy mini kit (Qiagen) for RNA purification after DNase I treatment. Gene expression profiling was performed using an R. philippinarum oligo-DNA microarray of 13,671 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:Morphine causes microbial dysbiosis. In this study we focused on restoration of native microbiota in morphine treated mice and looked at the extent of restoration and immunological consequences of this restoration. Fecal transplant has been successfully used clinically, especially for treating C. difficile infection2528. With our expanding knowledge of the central role of microbiome in maintenance of host immune homeostasis17, fecal transplant is gaining importance as a therapy for indications resulting from microbial dysbiosis. There is a major difference between fecal transplant being used for the treatment of C. difficile infection and the conditions described in our studies. The former strategy is based on the argument that microbial dysbiosis caused by disproportionate overgrowth of a pathobiont can be out-competed by re-introducing the missing flora by way of a normal microbiome transplant. This strategy is independent of host factors and systemic effects on the microbial composition. Here, we show that microbial dysbiosis caused due to morphine can be reversed by transplantation of microbiota from the placebo-treated animals.
Project description:Perkinsus marinus is an intracellular parasitic protozoan that is responsible for serious disease epizootics in marine bivalve molluscs worldwide and along with P. olseni belongs to the OIE list of notified diseases. Despite all available information on P. marinus genomics, more baseline data is required at the proteomic level for a better understanding of P. marinus biological processes, including virulence mechanisms. In the present study, we have established in vitro clonal cultures of P. marinus from infected gills and mantle tissues of C. rhizophorae to evaluate the parasite cellular proteomic profile. A high throughput label-free shotgun HDMS approach using nanoUPLC-MS was used. Our intention was to provide the first comprehensive proteome profile of P. marinus that might serve as a valuable resource for future investigations involving comparative analyses of P. marinus from different regions, as well as comparisons of different species of Perkinsus.
Project description:This pilot phase II trial studies how well giving vorinostat, tacrolimus, and methotrexate works in preventing graft-versus-host disease (GVHD) after stem cell transplant in patients with hematological malignancies. Vorinostat, tacrolimus, and methotrexate may be an effective treatment for GVHD caused by a bone marrow transplant.