Project description:Bacterial biofilm communities associated with Ulva ohnoi grown under varying light conditions and either inoculated or not with Phaeobacter sp. 4UAC3 Metagenome
Project description:Aging is the predominant cause of morbidity and mortality in industrialized countries, yet the molecular mechanisms driving aging and especially the contribution by the microbiome remain unclear. We combined multi-omics with metabolic modeling to comprehensively characterize host–microbiome interactions during aging in mice. Our findings reveal a complex dependency of host metabolism on known and novel microbial interactions. We observed a pronounced reduction in metabolic activity within the aging microbiome accompanied by reduced beneficial interactions between bacterial species. These microbial changes coincided with increased inflammaging as well as a corresponding downregulation of key host pathways, predicted by our model to be microbiome-dependent, that are crucial for maintaining intestinal barrier function, cellular replication, and homeostasis. Our results elucidate microbiome–host interactions that potentially influence host aging processes, focusing on microbial nucleotide metabolism as a pivotal factor in aging dynamics. These pathways could serve as future targets for the development of microbiome-based anti-aging therapies.
Project description:It is well known that host-microbes and immunity interactions are influenced by dietary patterns, as well as daily environmental light-dark (LD) cycles that entrain circadian rhythms in the host. Emerging data has highlighted the importance of diet patterns and timing on the interaction among circadian rhythms, gut microbiome, and immunity, however, their impacts on LD cycles are less reported. Therefore, we aim to study how LD cycles regulate the homeostatic crosstalk between gut microbiome, hypothalamic and hepatic circadian clock oscillations and immunity. We hypothesized that different environmental LD cycles: (1) constant darkness, LD0/24; (2) short light, LD8/16; (3) normal LD cycle, LD12/12; (4) long light, LD16/8; and (5) constant light, LD24/0, may affect immunity and metabolism to varying degrees. Therefore, 240 mice were managed with chow diets (CD) and antibiotics treatments (ABX) under five different LD cycles for 42 days. The colonic (co) and cecum (ce) contents were obtained for studying their impacts on gut microbiome using 16S rRNA sequencing.
Project description:Aging is the predominant cause of morbidity and mortality in industrialized countries. The specific molecular mechanisms that drive aging are poorly understood, especially the contribution of the microbiota in these processes. Here, we combined multi-omics with metabolic modeling in mice to comprehensively characterize host–microbiome interactions and how they are affected by aging. Our findings reveal a complex dependency of host metabolism on microbial functions, including previously known as well as novel interactions. We observed a pronounced reduction in metabolic activity within the aging microbiome, which we attribute to reduced beneficial interactions in the microbial community and a reduction in the metabolic output of the microbiome. These microbial changes coincided with a corresponding downregulation of key host pathways predicted by our model that are crucial for maintaining intestinal barrier function, cellular replication, and homeostasis. Our results elucidate potential microbiome–host interactions that may influence host aging processes, focusing on microbial nucleotide metabolism as a pivotal factor in aging dynamics.
2024-03-27 | GSE262290 | GEO
Project description:Bacterial community dynamics on the seaweed Ulva ohnoi during a full cultivation cycle in a land-based aquaculture pond system