Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU223 showed significantly inhibited biofilm formation of S. aureus. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU223 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU 257-1 showed significantly inhibited biofilm formation of E. coli. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU 257-1 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:The strain Planococcus kocurii O516 isolated from the marine culture environment was found to be stably and highly effective for the degradation of sulfamethoxazole. We investigated the expression behavior of functional genes related to this degradation ability in P. kocurii O516 under the culture conditions with or without sulfamethoxazole.
2020-08-08 | GSE150668 | GEO
Project description:Bacteria isolated from beach plastics
Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
Project description:We compared the global transcriptomic analysis of Desulfoluna spongiiphila strain AA1, an organohalide-respiring Desulfobacterota isolated from a marine sponge, with 2,6-dibromophenol or with sulfate as electron acceptor. The most significant difference of the transcriptomic analysis was the expression of one reductive dehalogenase gene cluster (rdh16), which was significantly upregulated with 2,6-dibromophenol.
Project description:Marine cyanobacteria are thought to be the most sensitive of the phytoplankton groups to copper toxicity, yet little is known of the transcriptional response of marine Synechococcus to copper shock. Global transcriptional response to two levels of copper shock was assayed in both a coastal and an open ocean strain of marine Synechococcus using whole genome expression microarrays. Both strains showed an osmoregulatory-like response, perhaps as a result of increasing membrane permeability. This could have implications for marine carbon cycling if copper shock leads to dissolved organic carbon leakage in Synechococcus. The two strains additionally showed a reduction in photosynthetic gene transcripts. Contrastingly, the open ocean strain showed a typical stress response whereas the coastal strain exhibited a more specific oxidative or heavy metal type response. In addition, the coastal strain activated more regulatory elements and transporters, many of which are not conserved in other marine Synechococcus strains and may have been acquired by horizontal gene transfer. Thus, tolerance to copper shock in some marine Synechococcus may in part be a result of an increased ability to sense and respond in a more specialized manner.