Project description:A phylogenetic microarray targeting 66 families described in the human gut microbiota has been developped aud used to monitor the gut microbiota's structure and diversity. The microarray format provided by Agilent and used in this study is 8x15K. A study with a total of 4 chips was realized. Arrays 1 and 2: Hybridization with 100ng of labelled 16S rRNA gene amplicons from a mock community sample and 250ng of labelled 16S rRNA gene amplicons from 1 faecal sample. Each Agilent-030618 array probe (4441) was synthetized in three replicates. Arrays 3 and 4: Hybridization with 250ng of labelled 16S rRNA gene amplicons from 2 faecal samples. Each Agilent-40558 array probe (4441) was synthetized in three replicates.
Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:In vitro gut microbiota models are often used to study drug-microbiome interaction. Similar to culturing individual microbial strains, the biomass accumulation of in vitro gut microbiota follows a logistic growth curve. Current studies on in vitro gut microbiome responses introduce drug stimulation during different growth stages, e.g. lag phase or stationary phase. However, in vitro gut microbiota in different growth phases may respond differently to a same stimuli. Therefore, in this study, we used a 96-deep well plate-based culturing model (MiPro) to culture the human gut microbiota. Metformin, as the stimulus, was added at the lag, log and stationary phases of growth. Microbiome samples were collected at different time points for optical density and metaproteomic functional analysis. Results show that in vitro gut microbiota responded differently to metformin added during different growth phases, in terms of the growth curve, alterations of taxonomic and functional compositions. The addition of drugs at log phase leads to the greatest decline of bacterial growth. Metaproteomic analysis suggested that the strength of the metformin effect on the gut microbiome functional profile was ranked as lag phase > log phase > stationary phase. Our results showed that metformin added at lag phase resulted in a significantly reduced abundance of the Clostridiales order as well as an increased abundance of the Bacteroides genus, which was different from stimulation during the rest of the growth phase. Metformin also resulted in alterations of several pathways, including energy production and conversion, lipid transport and metabolism, translation, ribosomal structure and biogenesis. Our results indicate that the timing for drug stimulation should be considered when studying drug-microbiome interactions in vitro.
Project description:The human gut microbiota is crucial for degrading dietary fibres from the diet. However, some of these bacteria can also degrade host glycans, such as mucins, the main component of the protective gut mucus layer. Specific microbiota species and mucin degradation patterns are associated with inflammatory processes in the colon. Yet, it remains unclear how the utilization of mucin glycans affects the degradation of dietary fibres by the human microbiota. Here, we used three dietary fibres (apple pectin, β-glucan and xylan) to study in vitro the dynamics of colon mucin and dietary fibre degradation by the human faecal microbiota. The dietary fibres showed clearly distinguishing modulatory effects on faecal microbiota composition. The utilization of colon mucin in cultures led to alterations in microbiota composition and metabolites. Metaproteome analysis showed the central role of the Bacteroides in degradation of complex fibres while Akkermansia muciniphila was the main degrader of colonic mucin. This work demonstrates the intricacy of complex glycan metabolism by the gut microbiota and how the utilization of host glycans leads to alterations in the metabolism of dietary fibres. Metaproteomics analysis of this data reveals the functional activities of the bacteria in consortia, by this contributing to a better understanding of the complex metabolic pathways within the human microbiota that can be manipulated to maximise beneficial microbiota-host interactions.
Project description:We compared the microbiota of paired mouse caecal contents and faeces by applying a multi-omic approach, including 16S rDNA sequencing, shotgun metagenomics, and shotgun metaproteomics. The aim of the study was to verify whether faecal samples are a reliable proxy for the mouse colonic luminal microbiota, as well as to identify changes in taxonomy and functional activity between caecal and faecal microbial communities, which have to be carefully considered when using stool as sample for mouse gut microbiota investigations.
Project description:The human gut microbiota is crucial for degrading dietary fibres from the diet. However, some of these bacteria can also degrade host glycans, such as mucins, the main component of the protective gut mucus layer. Specific microbiota species and mucin degradation patterns are associated with inflammatory processes in the colon. Yet, it remains unclear how the utilization of mucin glycans affects the degradation of dietary fibres by the human microbiota. Here, we used three dietary fibres (apple pectin, β-glucan and xylan) to study in vitro the dynamics of colon mucin and dietary fibre degradation by the human faecal microbiota. The dietary fibres showed clearly distinguishing modulatory effects on faecal microbiota composition. The utilization of colon mucin in cultures led to alterations in microbiota composition and metabolites. Metaproteome analysis showed the central role of the Bacteroides in degradation of complex fibres while Akkermansia muciniphila was the main degrader of colonic mucin. This work demonstrates the intricacy of complex glycan metabolism by the gut microbiota and how the utilization of host glycans leads to alterations in the metabolism of dietary fibres. Metaproteomics analysis of this data reveals the functional activities of the bacteria in consortia, by this contributing to a better understanding of the complex metabolic pathways within the human microbiota that can be manipulated to maximise beneficial microbiota-host interactions. In this study two different mucin samples were used: commercial porcine gastric mucin and in house prepared porcine colonic mucin. This dataset analyses the proteome of: A) autoclaved porcine colonic mucin; B) not autoclaved porcine colonic mucin; C) porcine gastric mucin.