Project description:In previous work in our group, shotgun genome sequencing of Arthrobacter sp. revealed potential new P450 monooxygenases and many other oxidoreductases with putative hydroxylation activity. A targeted approach to identify enzymes involved in the degradation of certain molecules is proteomic analysis. In the case of growth on certain substances, enzymes like P450s, which are responsible for the observed organism’s capabilities, might be overexpressed or initially induced.
Project description:Arthrobacter sp. CGMCC 3584 are able to produce high yields of extracellular cyclic adenosine monophosphate (cAMP), which plays a vital role in the field of treatment of disease and animal food, during aerobic fermentation. DNA array-based transcriptional analysis of Arthrobacter cells was conducted to elucidate the higher productivity of cAMP under high oxygen supply. Results showed that 14.1% and 19.3% of the whole genome genes were up-regulated and down-regulated notably, respectively. The largest group with altered transcriptional levels belonged to the group involved in carbohydrate transport and metabolism. Other large functional groups of differentially expressed genes changed significantly included amino acid transport and metabolism, inorganic ion transport and metabolism and transcription.
Project description:Arthrobacter sp. CGMCC 3584 are able to produce high yields of extracellular cyclic adenosine monophosphate (cAMP), which plays a vital role in the field of treatment of disease and animal food, during aerobic fermentation. Comparative transcriptomic analysis revealed that arpde inactivation had two major effects on metabolism: inhibition of glycolysis, PP pathway, and amino acid metabolism; promotion of the purine metabolism and carbon flux from the precursor PRPP, which benefited cAMP production.
Project description:Analyis gene expression in crc-1 knu-1 compared with knu-1 Initiation of the carpel primordia is marked by the termination of floral stem cells. Although genetic evidences have suggested that the YABBY gene CRABS CLAW (CRC) regulates the development of carpel, as well as the floral meristem determinacy as a target of the homeotic protein AGAMOUS, the underlying mechanism remains unclear. Here we show that the tetraspanin-encoding gene TONADO2 (TRN2) and the auxin biosynthesis gene YUCCA4 (YUC4) act as downstream targets of CRC.