Project description:The wheat gene Lr34 (Yr18/Pm38/Sr57/Ltn1) encodes a putative ABCG-type of transporter and is a unique source of disease resistance providing durable and partial resistance against multiple fungal pathogens. Lr34 has been found to be functional as a transgene in barley. We used microarrays to decipher the changes in global gene expression goverened by Lr34 expression in barley.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. Fhs1 contains a Zn(II)2Cys6 fungal-type DNA-binding domain and localized to nuclei , suggesting that Fhs1 is a transcription factor required for hydroxiurea.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms of small non-coding RNA-mediated gene regulation during ascospore production, we compared small RNA transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639 and RNAi component mutants at 5 days after sexual induction.
Project description:Barley contains a much higher content of bioactive substances than wheat. In order to investigate the effect of genome interaction between barley and wheat on phytosterol content, we used a series of barley chromosome addition lines of common wheat. The wheat 38k-microarray was utilized for screening of genes with expression levels specifically increased by an additive effect or synergistic action between wheat and barley chromosomes. We determined the overall expression pattern of genes related to phytosterol biosynthesis in wheat and in each addition line. Together with determining the phytosterol levels of wheat, barley and each addition line, we assess the critical genes in the phytosterol pathway that can be expressed to promote phytosterol levels.
Project description:In this study, we used the Affymetrix wheat GeneChip to examine the transcript accumulation in a near-isogenic line pair carrying resistant and susceptible alleles at the wheat Fhb1 locus. The objectives of this study were: (1) to identify the overall response in wheat to F. graminearum infection; (2) to identify key genes involved in FHB resistance/susceptibility pathways in wheat; (3) to compare the transcript profiles of wheat and barley during F. graminearum infection; and (4) to examine the relationship between transcript accumulation, disease severity, fungal biomass and trichothecene accumulation in wheat. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Seungho Cho. The equivalent experiment is TA20 at PLEXdb.]
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms for initial stage of perithecia development, we compared transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639, abaA, and fpo1 at 1 day after sexual induction.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect cellular responses toward heat stress in the plant pathogenic fungus F. graminearum, we compared transcriptomes of the fungal cultures incubated in normal temperature condition (25 ºC) and in high temperature condition (37 ºC) for 15 min.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms of small non-coding RNA-mediated gene regulation during ascospore production, we compared transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639 and RNAi component mutants at 5 days after sexual induction.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. To dissect molecular mechanisms for initial stage of perithecia development, we compared transcriptomes of fungal cultures harvested from F. graminearum wild-type strain Z-3639, abaA, and fpo1 at 1 day after sexual induction. 9 samples examined: Fungal cultures harvested from Fusarium graminearum wild-type strain Z-3639, abaA, and fpo1 at 1 day after sexual induction.