Project description:Hepatocellular carcinoma (HCC) is a common cancer that frequently overexpresses the c-Myc (Myc) oncoprotein. Using a mouse model of Myc-induced HCC, we studied the metabolic, biochemical, and molecular changes accompanying HCC progression, regression, and recurrence. These involved altered rates of pyruvate and fatty acid β-oxidation and the likely re-directing of glutamine into biosynthetic rather than energy-generating pathways. Initial tumors also showed reduced mitochondrial mass and differential contributions of electron transport chain complexes I and II to respiration. The uncoupling of complex II's electron transport function from its succinate dehydrogenase activity also suggested a mechanism by which Myc generates reactive oxygen species. RNA sequence studies revealed an orderly progression of transcriptional changes involving pathways pertinent to DNA damage repair, cell cycle progression, insulin-like growth factor signaling, innate immunity, and further metabolic re-programming. Only a subset of functions deregulated in initial tumors was similarly deregulated in recurrent tumors thereby indicating that the latter can “normalize” some behaviors to suit their needs. An interactive and freely available software tool was developed to allow continued analyses of these and other transcriptional profiles. Collectively, these studies define the metabolic, biochemical, and molecular events accompanyingHCCevolution, regression, and recurrence in the absence of any potentially confounding therapies.
Project description:To identify proteomic signatures associated with hepatocellular carcinoma driven by MYC overexpression, proteomics was performed on the LAP-tTA/tetO-MYC mouse conditional liver cancer model. Upon MYC activation, mice form liver cancer. Differential proteomics was performed in "MYC on" (MYC-HCC) mouse liver tumors versus mouse control normal liver tissue (where MYC was not overexpressed to drive tumorigenesis -- "MYC off").
Project description:Hepatocellular carcinoma (HCC) is a common cancer that frequently overexpresses the c-Myc (Myc) oncoprotein. Using a mouse model of Myc-induced HCC, we studied the metabolic, biochemical, and molecular changes accompanying HCC progression, regression, and recurrence. These involved altered rates of pyruvate and fatty acid β-oxidation and the likely re-directing of glutamine into biosynthetic rather than energy-generating pathways. Initial tumors also showed reduced mitochondrial mass and differential contributions of electron transport chain complexes I and II to respiration. The uncoupling of complex II's electron transport function from its succinate dehydrogenase activity also suggested a mechanism by which Myc generates reactive oxygen species. RNA sequence studies revealed an orderly progression of transcriptional changes involving pathways pertinent to DNA damage repair, cell cycle progression, insulin-like growth factor signaling, innate immunity, and further metabolic re-programming. Only a subset of functions deregulated in initial tumors was similarly deregulated in recurrent tumors thereby indicating that the latter can "normalize" some behaviors to suit their needs. An interactive and freely available software tool was developed to allow continued analyses of these and other transcriptional profiles. Collectively, these studies define the metabolic, biochemical, and molecular events accompanyingHCCevolution, regression, and recurrence in the absence of any potentially confounding therapies.
Project description:Hepatocellular carcinoma (HCC) represents the third leading cause of cancer-related death worldwide and has been increasing in recent years in developed nations1,2. The MYC oncogene or its paralogs are frequently amplified or overexpressed in particularly aggressive subtypes of cancer associated with stem cell-like features and worse clinical outcomes3,4, including in liver cancer5. Unfortunately, selective inhibitors that target MYC or its transcriptional program are not yet clinically available for therapy of HCC. Here, we identified methionine metabolism as a selective vulnerability for MYC but not RAS-driven liver cancers. MYC-driven liver cancer cells are methionine dependent and S-adenosylmethionine (SAM), the predominant methyl donor, partially rescues methionine depletion. A low methionine diet, or the methylation inhibitor 5-azacytidine limited MYC-driven tumor formation, but RAS-driven liver cancer was resistant to a low methionine diet. Metabolic tracing of methionine catabolism in MYC high cells identified increased m5C methylation of genomic DNA or ribosomal RNA. We identified NOP2, an rRNA m5C-methyltransferase as a MYC target gene. Knockdown of NOP2 selectively inhibited MYC liver cancer cell proliferation and in vivo tumorigenesis. Thus, methionine catabolism is critical for MYC-driven liver tumorigenesis and NOP2 may serve as a new therapeutic target in liver cancer.
Project description:Medulloblastoma (MB) is the most common malignant brain tumor in children. Patients whose tumors exhibit overexpression or amplification of the MYC oncogene (c-MYC) usually have an extremely poor prognosis, but there are no animal models of this subtype of the disease. Here we show that cerebellar stem cells expressing Myc and mutant Trp53 (p53) generate aggressive tumors following orthotopic transplantation. These tumors consist of large, pleiomorphic cells and resemble human MYC-driven MB at a molecular level. Notably, antagonists of PI3K/mTOR signaling, but not Hedgehog signaling, inhibit growth of tumor cells. These findings suggest that cerebellar stem cells can give rise to MYC-driven MB, and identify a novel model that can be used to test therapies for this devastating disease. To gain insight into the pathways that control growth of MYC-driven MB, we compared gene expression profiles of murine Myc/DNp53 (MP) tumor cells to those of freshly isolated cerebellar stem cells (Prom1+Lin- cells) and of tumors from Ptch1 mutant mice (a model for Sonic Hedgehog-associated MB). RNA was isolated from stem cells and tumor cells using the RNAqueous kit (Ambion). RNA was labeled and hybridized to Affymetrix Mouse Genome 430 2.0 arrays. 19 mouse cell samples (stem cells and tumor cells) were analyzed. There are four groups of samples, three with five biological replicates and the last with four (one outlier was removed). To gain insight into the mechanisms of transformation into tumors, we compared the gene expression profiles of MP tumor cells derived from stem cells (Myc/DNp53-infected Prom1+Lin- cells, designated MP-pl) or progenitors (Myc/DNp53-infected Prom1+ cells, designated MP-p) to gene expression profiles of uninfected stem cells (designated NSC) and profiles from a distinct model of medulloblastoma, the patched mutant mouse (designated ptch1).
Project description:Tumor cells must rewire nucleotide synthesis to satisfy the demands of unbridled proliferation. Meanwhile, they exhibit augmented reactive oxygen species (ROS) production which paradoxically damages DNA and free dNTPs. How these metabolic processes are integrated to fuel tumorigenesis remains to be investigated. MYC family oncoproteins are central regulators that coordinate nucleotide synthesis and ROS generation to drive the development of numerous human cancers. We herein performed a CRISPR-based functional screen targeting metabolic genes and identified nudix hydrolase 1 (NUDT1) as a MYC-driven metabolic dependency. Mechanistically, MYC orchestrated the balance of two metabolic pathways that act in parallel, the NOX4-ROS pathway and the PLK1-NUDT1 nucleotide-sanitizing pathway. We describe LC-1-40 as the first-in-class degrader that potently and selectively depletes NUDT1 in vivo. Administration of LC-1-40 disrupted MYC-controlled metabolic homeostasis, resulting in excessive nucleotide oxidation, cytotoxicity and therapeutic responses in patient-derived xenografts. Thus, pharmacological targeting of NUDT1 represents an actionable MYC-driven metabolic liability.