ABSTRACT: Bovine pre-transfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer (endometrial study)
Project description:This SuperSeries is composed of the following subset Series: GSE20974: Bovine pre-transfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer (endometrial study) GSE21047: Bovine pre-transfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer (embryo study) Refer to individual Series
Project description:Bovine pre-transfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer (embryo study)
| PRJNA129685 | ENA
Project description:Bovine pre-transfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer
Project description:Early embryo loss affects all mammalian species, including humans and agriculturally important food-producing mammals such as cattle. The developing conceptus (embryo and extra-embryonic membranes) secretes factors which modify the endometrium and can be critical for early pregnancy processes such maternal recognition of pregnancy (MRP) and enhancing uterine receptivity to implantation. For example, a competent bovine conceptus secretes IFNT to initiate MRP. The bovine conceptus also secretes other proteins at the time of MRP, including CAPG and PDI, which are highly conserved among placental mammals. We have previously shown that these proteins act upon the endometrium to modulate receptivity, embryo development, and implantation in species with different implantation strategies (humans and cattle). We hypothesise that developing a novel 3D bovine endometrium on a chip system will enhance our understanding of the role of conceptus-derived factors in altering the endometrium and/or ULF secretion. Here we have developed a 3D bovine endometrium on a chip system, comprising both stromal and epithelial cell culture combined with culture medium flow better mimics the in vivo endometrium and exposure to conceptus-derived factors than conventional 2D endometrial cell culture. We have demonstrated that the conceptus-derived proteins CAPG and PDI modulate the endometrial transcriptome and secretory response to promote pathways associated with early pregnancy and alter ULF composition. This work highlights the critical need for more robust and in vivo-like culture systems to study endometrial-conceptus interactions in vitro to further investigate the role of conceptus derived factors for pregnancy success.
Project description:Embryo implantation into maternal endometrium is critical for initiation and establishment of pregnancy, requiring developmental synchrony between endometrium and blastocyst. However, factors regulating human endometrial-embryo cross talk and facilitate implantation remain largely unknown. Extracellular vesicles (EVs) are emerging as important mediators of this process. Here, human trophectomderm stem cell-derived EVs were shown to transfer to and regulate human endometrial cells towards processes associated with implantation. Importantly, transfer of trophectoderm EV cargo proteins to endometrial cells to mediate changes in polarity is demonstrated.
Project description:Early embryo loss affects all mammalian species, including humans and agriculturally important food-producing mammals such as cattle. The developing conceptus (embryo and extra-embryonic membranes) secretes factors which modify the endometrium and can be critical for early pregnancy processes such maternal recognition of pregnancy (MRP) and enhancing uterine receptivity to implantation. For example, a competent bovine conceptus secretes IFNT to initiate MRP. The bovine conceptus also secretes other proteins at the time of MRP, including CAPG and PDI, which are highly conserved among placental mammals. We have previously shown that these proteins act upon the endometrium to modulate receptivity, embryo development, and implantation in species with different implantation strategies (humans and cattle). We hypothesise that developing a novel 3D bovine endometrium on a chip system will enhance our understanding of the role of conceptus-derived factors in altering the endometrium and/or ULF secretion. Here we have developed a 3D bovine endometrium on a chip system, comprising both stromal and epithelial cell culture combined with culture medium flow better mimics the in vivo endometrium and exposure to conceptus-derived factors than conventional 2D endometrial cell culture. We have demonstrated that the conceptus-derived proteins CAPG and PDI modulate the endometrial transcriptome and secretory response to promote pathways associated with early pregnancy and alter ULF composition. This work highlights the critical need for more robust and in vivo-like culture systems to study endometrial-conceptus interactions in vitro to further investigate the role of conceptus derived factors for pregnancy success.
Project description:The aberrant gene expression in the uterine endometrium and embryo has been the major causes of pregnancy failure in cattle. Therefore, selecting cows having adequate endometrial receptivity and embryos of better developmental competence based on the gene expression could increase the number of calves produced by in each cow during its productive life time. We used endometrial and embryo biopsy technology in conjunction with the pregnancy outcome information to establish a direct link between the pre-transfer endometrial or in vivo derived embryo gene expression and pregnancy outcome after embryo transfer. Endometrial samples were collected from Simmental heifers at day 7 and 14 of the estrous cycle, one cycle prior to embryo transfer. In the next cycle, embryo biopsies consisting of 60-70% of inner cell mass and trophectoderm were transferred to the recipients at day 7 of the estrous cycle. The remaining 30-40% parts of the embryos were retained for analysis.Pregnancy diagnosis was performed at days 28 and 42 by ultrasonography and at day 56 by rectal palpation. Those heifers returned to heat at day 21 were considered as non pregnant or non receptive endometrium (NP) while those heifers ended up with successful pregnancy and calf delivery was considered as the calf delivery group or receptive endometrium (CD). Following this, the endometrial samples collected during the pre-transfer period and the embryo biopsies retained during embryo transfer were categorized based on the pregnancy outcome. Those endometrial biopsies collected at days 7 and 14 of the estrous cycle from heifers resulted in successful calf delivery were designated as CDd7 and CDd14, respectively and endometrial biopsies taken at days 7 and 14 of the estrous cycle from those subsequently resulted in no pregnancy were designated as NPd7 and NPd14, respectively. Similarly, the embryo biopsies were classified as those embryo biopsies resulted in successful calf delivery and those resulted in no pregnancy
Project description:The aberrant gene expression in the uterine endometrium and embryo has been the major causes of pregnancy failure in cattle. Therefore, selecting cows having adequate endometrial receptivity and embryos of better developmental competence based on the gene expression could increase the number of calves produced by each cow during its productive life time. We used endometrial and embryo biopsy technology in conjunction with the pregnancy outcome information to establish a direct link between the pre-transfer endometrial or in vivo derived embryo gene expression and pregnancy outcome after embryo transfer. Endometrial samples were collected from Simmental heifers at day 7 and 14 of the estrous cycle, one cycle prior to embryo transfer. In the next cycle, embryo biopsies consisting of 60-70% of inner cell mass and trophectoderm were transferred to the recipients at day 7 of the estrous cycle. The remaining 30-40% parts of the embryos were retained for analysis.Pregnancy diagnosis was performed at days 28 and 42 by ultrasonography and at day 56 by rectal palpation. Those heifers returned to heat at day 21 were considered as non pregnant or non receptive endometrium (NP) while those heifers ended up with successful pregnancy and calf delivery was considered as the calf delivery group or receptive endometrium (CD). Following this, the endometrial samples collected during the pre-transfer period and the embryo biopsies retained during embryo transfer were categorized based on the pregnancy outcome. Those endometrial biopsies collected at days 7 and 14 of the estrous cycle from heifers resulted in successful calf delivery were designated as CDd7 and CDd14, respectively and endometrial biopsies taken at days 7 and 14 of the estrous cycle from those subsequently resulted in no pregnancy were designated as NPd7 and NPd14, respectively. Similarly, the embryo biopsies were classified as those embryo biopsies resulted in successful calf delivery and those resulted in no pregnancy
Project description:In summary the main goal of this study is to determine the transcriptional profile of bovine endoemtrium at early stage of development in relation to pregnancy success after transfer of in vitro derived blastocysts 12 pool of bovine endometrium based on out come of pregnancy sucess
Project description:In summary the main goal of this study is to determine the transcriptional profile of bovine endoemtrium at early stage of development in relation to pregnancy success after transfer of in vivo derived blastocysts 12 pool of bovine endometrium based on out come of pregnancy sucess