ABSTRACT: Performance comparison of different biological fillers in continuous-flow packed-bed biofilm reactor (PBBR) and its application in Oreochromis nilotica farming effluent
Project description:Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents.
2012-05-10 | GSE37574 | GEO
Project description:microorganisms obtained from fungal fluidized/packed bed reactor
| PRJNA661993 | ENA
Project description:Packed bed reactor metagenomes under different weak magnetic fields
Project description:A continuous culture of Bifidobacterium longum NCC2705 was carried out in a 2.5-l reactor (Bioengineering AG, Wald, Switzerland), equipped with a Biospectra control system (Biospectra AG, Schlieren, Switzerland) and containing 2 l of MRS, added of 0.05% cysteine, inoculated with 2 % (v/v) preculture. The temperature was maintained at 37°C and the pH at 6.0 by addition of 5 M NaOH. The culture was stirred constantly at 250 rpm using two rushton type propellers. Anaerobic conditions were maintained by flushing the headspace of the reactor with CO2. After 8 h in batch mode the culture was run in continuous mode at a dilution rate of 0.1 h-1. Fresh medium was added using a peristaltic pump (Alitea, Bioengineering AG, Wald, Switzerland), and fermented broth harvested with a second peristaltic pump (Alitea, Bioengineering AG, Wald, Switzerland) set at a slightly higher flow rate. A stabilization period of 90 h (corresponding to nine reactor volume changes) was operated prior culture monitoring (t=0). Aliquots of 2 ml taken at t=31, 134 and 211 h were centrifuged (4,000 g, 1 min, room temperature) for transcriptomic analysis. Supernatants were discarded and cell pellets snap frozen in liquid nitrogen and stored at -80ºC until RNA-extraction. Keywords: Time course of Bifidobacterium longum in continuous culture
Project description:A continuous culture of Bifidobacterium longum NCC2705 was carried out in a 2.5-l reactor (Bioengineering AG, Wald, Switzerland), equipped with a Biospectra control system (Biospectra AG, Schlieren, Switzerland) and containing 2 l of MRS, added of 0.05% cysteine, inoculated with 2 % (v/v) preculture. The temperature was maintained at 37°C and the pH at 6.0 by addition of 5 M NaOH. The culture was stirred constantly at 250 rpm using two rushton type propellers. Anaerobic conditions were maintained by flushing the headspace of the reactor with CO2. After 8 h in batch mode the culture was run in continuous mode at a dilution rate of 0.1 h-1. Fresh medium was added using a peristaltic pump (Alitea, Bioengineering AG, Wald, Switzerland), and fermented broth harvested with a second peristaltic pump (Alitea, Bioengineering AG, Wald, Switzerland) set at a slightly higher flow rate. A stabilization period of 90 h (corresponding to nine reactor volume changes) was operated prior culture monitoring (t=0). Aliquots of 2 ml taken at t=31, 134 and 211 h were centrifuged (4,000 g, 1 min, room temperature) for transcriptomic analysis. Supernatants were discarded and cell pellets snap frozen in liquid nitrogen and stored at -80ºC until RNA-extraction. Keywords: Time course of Bifidobacterium longum in continuous culture Bifidobacterium longum NCC2705 at time 31 versus time 134 h and versus time 211 h in continuous culture. Two technical replicares with dyes swaps
Project description:This a model from the article:
Diffusion induced oscillatory insulin secretion.
Keener JP. Bull Math Biol.
2001 Jul;63(4):625-41. 11497161
,
Abstract:
Oscillatory secretion of insulin has been observed in many different experimental preparations. Here we examine a mathematical model for in vitro insulin secretion from pancreatic beta cells in a flow-through reactor. The analysis shows that oscillations result because of an important interplay between flow rate of the reactor and insulin diffusion. In particular, if the ratio of flow rate to volume of the reaction bed is too large, oscillations are eliminated, in contradiction to the conclusions of Maki and Keizer (L. W. Maki and Keizer J. Mathematical analysis of a proposed mechanism for oscillatory insulin secretion in perifused HIT-15 cells. Bull. Math. Biol., 57(1995), 569-591). Furthermore, with reasonable numbers for the experimental parameters and the diffusion of insulin, the model equations do not exhibit oscillations.
This model was taken from the CellML repository
and automatically converted to SBML.
The original model was:
Keener (2001)
The original CellML model was created by:
Catherine Lloyd
c.lloyd@aukland.ac.nz
The University of Auckland
The Bioengineering Institute
This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication
for more information.
In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.