Project description:This SuperSeries is composed of the following subset Series: GSE21122: Whole-transcript expression data for soft-tissue sarcoma tumors and control normal fat specimens GSE21123: Affymetrix SNP array data for soft tissue sarcoma samples Refer to individual Series
Project description:Analysis of undifferentiated pleomorphic sarcoma/malignant fibrous histiocytoma-like tumors from LSL-KrasG12D, p53Fl/Fl mouse model of soft tissue sarcoma. Murine soft tissue sarcomas (n = 17) were compared to normal muscle (n = 4). Tumors were isolated surgically from soft tissue sarcomas generated by conditional Kras and p53 alleles. Tumors were induced using an adenovirus expressing Cre recombinase. Normal muscle samples were isolated from mice of the same genotype without tumor induction.
Project description:Analysis of undifferentiated pleomorphic sarcoma/malignant fibrous histiocytoma like tumors from BrafCa, p53Fl/Fl mouse model of soft tissue sarcoma
Project description:MicroRNAs (miRNAs) are non-coding small RNAs that function as an endogenous regulator of gene expression. Their dysregulation has been implicated in the development of several cancers. However, the status of miRNA in soft tissue sarcomas has not yet been thoroughly investigated. This study examined the global miRNA expression in synovial sarcoma and compared the results to those in another translocation-associated sarcoma, the Ewing family of tumors, and in normal skeletal muscle. The 3D-Gene miRNA microarray platform (Toray, Kamakura, Japan) and unsupervised hierarchical clustering revealed a distinct expression pattern of miRNAs in synovial sarcoma from Ewing tumors and skeletal muscle. Thirty-five of the more than 700 miRNAs analyzed were differentially expressed in synovial sarcomas in comparison to other tissue types. There were 21 significantly up-regulated miRNAs, including some miRNAs, such as let-7e, miR-99b and miR-125a-3p, clustered within the same chromosomal loci. Quantitative reverse transcription-polymerase chain reaction also demonstrated that these miRNAs were over-expressed in synovial sarcomas. The down-regulation of let-7e and miR-99b by anti-miR miRNA inhibitors resulted in the suppression of the proliferation of synovial sarcoma cells, and modulated the expression of their putative targets, HMGA2 and SMARCA5, suggesting that these molecules have a potential oncogenic role. The unique miRNA expression pattern including the over-expressed miRNA clusters in synovial sarcoma warrants further investigation in order to develop a better understanding of the oncogenic mechanisms and future therapeutic strategies for synovial sarcoma. Ten synovial sarcomas, five Ewing tumors and five normal skeletal muscle specimens are analyzed.
Project description:Analysis of undifferentiated pleomorphic sarcoma/malignant fibrous histiocytoma-like tumors from LSL-KrasG12D, p53Fl/Fl mouse model of soft tissue sarcoma.
Project description:The tissue of origin form metastatic tumors is sometimes difficult to identify from clinical and histologic information. Gene expression signatures are one potential method for identifying the tissue of origin. In the development of algorithms to identify tissue of origin, a collection of human tumor metastatic specimens with known primary sites or primary tumors with poor differentiation are very useful in identifying gene expressions signatures that can classify unknown specimens as to the tissue of origin. Here we describe a series of 276 such tumor specimens used for this purpose. The specimens are poorly differentiated, undifferentiated and metastatic specimens from tumors of the following types/tissues of origin: breast, liver, non-Hodgkin's lymphoma, non-small cell lung cancer, ovary, testicular germ cell, thyroid, kidney, pancreas, colorectal cancer, soft tissue sarcoma, bladder, gastric cancer, prostate and melanoma. This data combined with other series (GSE2109) was used to validate a proprietary tumor classification algorithm of Pathwork Diagnostics. The results of this validation set (N = 545 CEL files) showed that the algorithm correctly identified the tissue of origin for 89.4% of the specimens. Guidelines for commercial use: http://pathworkdx.com/GSE12630_request.html
Project description:We used the Infinium HumanMethylation27 platform to profile DNA methylation in 80 primary, untreated high-grade soft tissue sarcomas, representing eight relevant subtypes, two non-neoplastic fat samples and 14 representative sarcoma cell lines. Marcus, Renner
Project description:Mouse muscle stem cells, defined as Pax7+ satellite cells, can initiate rhabdomyosarcoma when transformed by oncogenic Kras and concomitant loss of p53. Mouse Pax7+ satellite cells were transformed in vitro and in vivo utilizing the Cre-ER/loxp system. We wanted to address two major questions: do the in vitro and in vivo tumors cluster together compared to another mouse to another mouse derived soft-tissue sarcoma AND which human soft-tissue sarcoma do the in vivo derived tumors resemble transcriptionally? Therefore, tumors from cells transformed in vitro and tumors from mice that restrict the oncogenic lesions to Pax7+ satellite cells in vivo were compared to answer these two questions.
Project description:Clear cell sarcoma (CCS) of tendons and aponeuroses is a deadly soft-tissue malignancy resembling melanoma, with a predilection for young adults. EWS-ATF1, the fusion product of a balanced chromosomal translocation between chromosomes 22 and 12, is considered the definitional feature of the tumor. Conditional expression of the EWS-ATF1 human cDNA in the mouse generates CCS-like tumors with 100 percent penetrance. Tumors, developed through varied means of initiating expression of the fusion oncogene, model human CCS morphologically, immunohistochemically, and by genome-wide expression profiling. We also demonstrate that while fusion oncogene expression in later stages of differentiation can transform mesenchymal progenitor cells and generate tumors resembling CCS generally, expression in cells retaining stem cell markers permits the full melanoma-related phenotype. Nielsen et al. ("Molecular characterisation of soft tissue tumours: a gene expression study"; PMID 11965276) used microarray to compare a variety of soft-tissue neoplasms morphologically similar to clear cell sarcoma. In our study, we use their expression data (not previously submitted) in the profiling of our mouse mutant that models clear cell sarcoma. The mRNA profiles of a variety of soft-tissue neoplasm samples are examined by HEEBO microarrays. Included here are a total of 6 different types of tumors, and 5 of them have at least one biological replicate. The authors of "Molecular characterisation of soft tissue tumours: a gene expression study" (PMID 11965276) performed these microarray experiments, including data processing and normalization. We obtained these expression data, and used them to train a support vector machine, which was later used to characterize our mouse model of clear cell sarcoma (data submitted elsewhere).