Project description:Several strains with increased high light tolerance were previously generated by adaptive laboratory evolution from Synechocystis sp. PCC 6803 WT strain. The high light tolerance in each strain was caused by a few non-synonymous point mutations. Reintroduction of the corresponding point mutation in WT conferred enhanced tolerance to high light. Here, we characterized the responses at the transcriptional level using RNA-Seq approach to identify genes associated with the HL tolerance.
Project description:we obtained a HL tolerant (Tol) strain Synechocystis sp. PCC 6803 by adaptive evolution experiment that the cells were repeatedly subcultured for prolonged periods of time (52 days) under high light stress condition (7000 to 9000 μmol m-2 s-1). Although the growth of the parental strain almost stopped under 9000 μmol m-2 s-1, no growth inhibition was observed in the Tol strain. Furthermore, the growth rate was identical to that of parental strain under low light condition (40 μmol m-2 s-1). To further investigate the high light tolerant mechanisms in the Tol strain, the transcriptome was performed. The transcriptome data suggests the increase of isiA expression in the Tol strain under HL condition. The overexpression of isiA successfully enhanced the HL stress tolerance in the parental strain. The HL tolerant mechanism was different from previous reported mechanisms, such as a reduction of the light-harvesting antenna size. The tolerant strain would be an attractive host for bio-production under high light conditions.
Project description:To improve ethanol production directly from CO2 in photosynthetic cyanobacterial systems, one key issue that needs to be addressed is the low ethanol tolerance of cyanobacterial cells. Our previous proteomic and transcriptomic analyses found that several regulatory proteins were up regulated by exogenous ethanol in Synechocystis sp. PCC 6803. In this study, through tolerance analysis of the gene disruption mutants of the up-regulated regulatory genes, we uncovered that one transcriptional regulator, Sll0794, was related directly to ethanol tolerance in Synechocystis. Using a quantitative iTRAQ-LC-MS/MS proteomics approach coupled with quantitative real-time reverse transcription-PCR (RT-qPCR), we further determined the possible regulatory network of Sll0794. The proteomic analysis showed that in the ∆sll0794 mutant grown under ethanol stress a total of 54 and 87 unique proteins were down- and up-regulated, respectively. In addition, electrophoretic mobility shift assays (EMSAs) demonstrated that the Sll0794 transcriptional regulator was able to bind directly to the upstream regions of sll1514, slr1512 and slr1838, which encode a 16.6 kDa small heat shock protein, a putative sodium-dependent bicarbonate transporter and a carbon dioxide concentrating mechanism protein CcmK, respectively. The study provided a proteomic description of the putative ethanol-tolerance network regulated by the sll0794 gene, and revealed new insights on the ethanol-tolerance regulatory mechanism in Synechocystis. As the first regulatory protein discovered related to ethanol tolerance, the gene may serve as a valuable target for transcription machinery engineering to further improve ethanol tolerance in Synechocystis.
Project description:To identify the respective roles of light and ROS in the photoinhibition process and detect a possible light-driven tolerance to oxidative stress, we compared the transcriptomic responses of Synechococcus sp. WH7803 acclimated to low (LL) or high light (HL) to oxidative stress, induced by hydrogen peroxide (H202) or methylviologen (MV). Cultures were acclimated during many generations to continuous low light (LL, 18 ?mol photons m-2 s-1, hereafter LL cells) and high light (HL, 250 ?mol photons m-2 s-1, hereafter HL cells) provided by Sylvania Daylight 58W/154 fluorescent bulbs. For all stress experiments performed in this study, exponentially growing cultures (1 to 3 x 107 cells mL-1), were split into subcultures and submitted to oxidative stress by addition of H2O2 or MV and harvested when PSII quantum yield fell to half of the initial value. For H2O2 experiments, this level of PSII photoinactivation was reached 2 h after submitting LL and HL cultures to 750 M and 25 M respectively. Because of the large divergence in dose and kinetics responses to MV between LL- and HL cells, it was not possible to find MV concentrations leading to 50 % decrease of quantum yield at the same time for both light acclimations. Thus, array analyses for MV were performed on HL and LL cultures incubated at the same MV concentration (50 M) but harvested once PSII quantum yield was halved, i.e. after 1 and 3.5 h of stress respectively. All hybridizations were performed on 4 independent biological replicates and using as reference sample a pool of RNA from all samples investigated in this study. Pairwise comparison were performed to analyze the stress induced by either H2O2 or MV on both LL- and HL cultures (i.e. LL-Ct vs. LL+MV, LL-Ct vs. LL+H2O2, HL-Ct vs. HL+MV, HL-Ct vs. HL+H2O2) as well as to compare the steady state acclimation to different light conditions (i.e. LL-Ct vs. HL-Ct).
Project description:C4 plants frequently experience damaging high light (HL) and high temperature (HT) conditions in native environments, which reduce growth and yield. However, the mechanisms underlying these stress responses in C4 plants have been under-explored, especially the coordination between mesophyll (M) and bundle sheath (BS) cells. We investigated how the C4 model plant Setaria viridis responded to a four-hour HL or HT treatment at the photosynthetic, transcriptomic, and ultrastructural levels. Although we observed a comparable reduction of photosynthetic efficiency in HL- or HT-treated leaves, detailed analysis of multi-level responses revealed important differences in key pathways and M/BS specificity responding to HL and HT. We provide a systematic analysis of HL and HT responses in S. viridis, reveal different acclimation strategies to these two stresses in C4 plants, discover unique light/temperature responses in C4 plants in comparison to C3 plants, and identify potential targets to improve abiotic stress tolerance in C4 crops.
Project description:We isolated a Nannochloropsis oceanica LHCR mutant, named hlr1, which exhibits a greater tolerance to high light (HL) stress compared to the wild type.Global gene expression of WT and the hlr1 mutant, as a function of time in dark incubation (DK) and under high irradiance was measured by mRNA-Seq
Project description:Montagud2010 - Genome-scale metabolic network
of Synechocystis sp. PCC6803 (iSyn669)
This model is described in the article:
Reconstruction and analysis
of genome-scale metabolic model of a photosynthetic
bacterium.
Montagud A, Navarro E,
Fernández de Córdoba P, Urchueguía JF, Patil
KR.
BMC Syst Biol 2010; 4: 156
Abstract:
BACKGROUND: Synechocystis sp. PCC6803 is a cyanobacterium
considered as a candidate photo-biological production
platform--an attractive cell factory capable of using CO2 and
light as carbon and energy source, respectively. In order to
enable efficient use of metabolic potential of Synechocystis
sp. PCC6803, it is of importance to develop tools for
uncovering stoichiometric and regulatory principles in the
Synechocystis metabolic network. RESULTS: We report the most
comprehensive metabolic model of Synechocystis sp. PCC6803
available, iSyn669, which includes 882 reactions, associated
with 669 genes, and 790 metabolites. The model includes a
detailed biomass equation which encompasses elementary building
blocks that are needed for cell growth, as well as a detailed
stoichiometric representation of photosynthesis. We demonstrate
applicability of iSyn669 for stoichiometric analysis by
simulating three physiologically relevant growth conditions of
Synechocystis sp. PCC6803, and through in silico metabolic
engineering simulations that allowed identification of a set of
gene knock-out candidates towards enhanced succinate
production. Gene essentiality and hydrogen production potential
have also been assessed. Furthermore, iSyn669 was used as a
transcriptomic data integration scaffold and thereby we found
metabolic hot-spots around which gene regulation is dominant
during light-shifting growth regimes. CONCLUSIONS: iSyn669
provides a platform for facilitating the development of
cyanobacteria as microbial cell factories.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180008.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.