Project description:Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is poorly understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear, and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment, and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism, and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state.
Project description:Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is poorly understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear, and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment, and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism, and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state. mRNA profiles of third instar larvae from two different populations reared on three food types was sequenced on two lanes of an Illumina HiSeq 2000 Please note that the de novo assembly gives names to transcripts with the following convention: compXXX_cX_seqX. The first two identifiers (compXX_cX) are equivalent to a gene while the 'seq' identifier might refer to different isoforms or splice variants, etc. Therefore, for example, a gene might be comp123_c0, and this could have multiple sequences corresponding to different isoforms or splice variants. Since the analysis was carried out at the gene level, the program internally merged the multiple sequences together for each gene to generate the count matrix (AllGenesint.counts.matrix.txt) (i.e. it only includes comp123_c0), while the file from the assembly (i.e. Trinity.fasta) also include the individual sequences with the 'seq' identifier.
Project description:Local adaptation can play a fundamental role in the isolation of populations. While less well-studied than differentiation in sequence variation, changes in transcriptional variation during speciation also are fundamental to the evolutionary process. Drosophila mojavensis offers an unprecedented opportunity to examine the role of transcriptional differentiation in local adaptation. Drosophila mojavensis is a cactophilic fly composed of four ecologically distinct subspecies that inhabit the deserts of western North America. Each of the four subspecies utilizes necrotic tissue of different cactus host species characterized by distinct chemical profiles. The subspecies in Baja California, Mexico uses Stenocereus gummosus (Agria), in mainland Sonora it uses S. thurberi (Organ Pipe), in the Mojave Desert the host is Ferocactus cylindraceus (Red Barrel) and in Santa Catalina Island, USA, Opuntia littoralis (Prickly Pear) is the host. In this chapter we examine how the adaptation to the different environmental conditions across the four subspecies have shaped their transcriptional profiles. Using complete D. mojavensis genome microarrays we examined the transcriptome of third instar larvae from all four subspecies reared in standard laboratory media free of necrotic cactus-derived compounds. This experimental strategy focused on differences between constitutively expressed genes and not genes induced by necrotic cactus-derived compounds. The subspecies exhibited significant differential expression of genes that likely underlie the adaptation to different cactus hosts, such as detoxification genes (Glutathione S-transferases, Cytochrome P450s and UDP-Glycosyltransferases) and chemosensory genes (Odorant Receptors, Gustatory Receptors and Odorant Binding Proteins). Dataset from Matzkin, L. M. and Markow, T.A. Transcriptional differentiation across the four cactus host races of Drosophila mojavensis. In Speciation: Natural Processes, Genetics and Biodiversity. Edited by Michalak, P. Nova Science Publishers, Inc.
Project description:Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.0 microarray. Arsenic speciation and concentrations were analyzed in the rhizosphere soil, root-plaque, porewater and grain samples. Results indicated that intermittent flooding significantly altered As-speciation in the rhizosphere, and reduced methyl-As and AsIII concentrations in the pore water, root-plaque and rice grain. Ordination and taxonomic analysis of detected gene-probes indicated that root-plaque and rhizosphere assembled significantly different metal-transforming functional groups. Taxonomic non-redundancy was evident, suggesting that As-reduction, -oxidation and -methylation processes were performed by different microbial groups. As-transformation was coupled to different biogeochemical cycling processes establishing functional non-redundancy of rice-rhizosphere microbiome in response to both rhizosphere compartmentalization and experimental treatments. This study confirmed diverse As-biotransformation at root-soil interface and provided novel insights on their responses to water management, which can be applied for mitigating As-bioavailability and accumulation in rice grains.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:We present metaproteome data from maize rhizosphere from sodic soil. Isolation of proteome from maize rhizosphere collected from Experimental Farm, ICAR-IISS, Mau, India was done with the standardized protocol at our laboratory and metaproteome analysis was done with the standardized pipepline. In total 696 proteins with different functions representing 245 genus and 395 species were identified. The proteome data provides direct evidence on the biological processes in soil ecosystem and is the first reported reference data from maize rhizosphere.
Project description:In the presence of environmental change, natural selection can shape the transcriptome. Under a scenario of environmental change, genotypes that are better able to modulate gene expression to maximize fitness will tend to be favored. Therefore, it is important to examine gene expression at the population level in order to distinguish random or neutral gene expression variation from the pattern produced by natural selection. This study investigates the natural variation in transcriptional response to a cactus host shift utilizing the mainland Sonora population of Drosophila mojavensis. Drosophila mojavensis is a cactophilic species composed of four cactus host populations endemic to the deserts of North America. Overall, the change in cactus host was associated with a significant reduction in larval viability, as well as the differential expression of 21% of the genome (3,109 genes). Among the genes identified were a set of genes previously known to be involved in xenobiotic metabolism, as well as genes involved in cellular energy production, oxidoreductase/carbohydrate metabolism, structural components and mRNA binding. Interestingly, of the 3,109 genes whose expression was affected by host use, there was a significant overrepresentation of genes that lacked an orthologous call to the D. melanogaster genome, suggesting the possibility of an accelerated rate of evolution in these genes. Of the genes with a significant cactus effect, the majority, 2,264 genes, did not exhibit a significant cactus-by-line interaction. This population level approach facilitated the identification of genes involved in past cactus host shifts. Dataset from Population transcriptomics of cactus host shifts in Drosophila mojavensis, Matzkin, LM. Molecular Ecology.