Project description:A new species of agaricomycetes, Clitopilus lampangensis, is described based on collections from northern Thailand. This species was distinguished from previously described Clitopilus species by its pale yellow to grayish yellow pileus with the presence of wider caulocystidia. Molecular phylogenetic analyses, based on the data of the internal transcribed spacers (ITS) and the large subunit (LSU) of the nuclear ribosomal DNA, and the second largest subunit of RNA polymerase II (rbp2) genes, also support the finding that C. lampangensis is distinct from other species within the genus Clitopilus. A full description, color photographs, illustrations and a phylogenetic tree showing the position of C. lampangensis are provided.
Project description:The gilled mushroom Clitopilus passeckerianus (Entolomataceae, Agaricales, Basidiomycota) is well known to produce the terpenoid pleuromutilin, which is the biotechnological basis for medically important antibiotics such as lefamulin and retapamulin. Their unique mode of action and good tolerance entails an increasing demand of pleuromutilin-derived antibiotics in veterinary and human health care. Surprisingly, despite their pharmaceutical importance, no genome sequence is available of any pleuromutilin-producing fungus. Here, we present the high-quality draft genome sequence of the pleuromutilin-producer C. passeckerianus DSM1602 including functional genome annotation. More precisely, we employed a hybrid assembly strategy combining Illumina sequencing and Nanopore sequencing to assemble the mitochondrial genome as well as the nuclear genome. In accordance with the dikaryotic state of the fungus, the nuclear genome has a diploid character. Interestingly, the mitochondrial genome appears duplicated. Bioinformatic analysis revealed a versatile secondary metabolism with an emphasis on terpenoid biosynthetic enzymes in C. passeckerianus and also in related strains. Two alleles of biosynthetic gene clusters for pleuromutilin were found in the genome of C. passeckerianus. The pleuromutilin genes were reassembled with yeast-specific elements for heterologous expression in Saccharomyces cerevisiae. Our work lays the foundation for metabolic strain engineering towards higher yields of the valuable compound pleuromutilin.
Project description:Clitopilus passeckerianus is the fungal species responsible for the production of pleuromutilin, a diterpene antibiotic that is gaining in commercial interest. Production of the antibiotic is constrained by the low titers typically obtained from isolates. We therefore set out to investigate the possibility of using classical breeding techniques coupled with genetic manipulation as a means to develop such fungi. We show that the original production strain of C. passeckerianus is able to fruit under laboratory conditions, giving viable haploid meiotic basidiospores. The derived progeny displayed the typical physiological and genetic characteristics of a tetrapolar mating system. The monokaryon haploids produced pleuromutilin and haploid lines were amenable to genetic manipulation. Together this shows that the basic requirements for a classical breeding approach are present and the tools required to undertake directed genetic engineering on haploid strains are available, demonstrating that strain improvement may be feasible in this fungus.
Project description:Interrogation of an EST database for Clitopilus passeckerianus identified a putative homolog to the unusual stress response gene from yeast; ddr48, as being upregulated under pleuromutilin production conditions. Silencing of this gene, named cprp, produced a population of transformants which demonstrated significantly reduced pleuromutilin production. Attempts to complement a Saccharomyces cerevisiae ddr48 mutant strain (strain Y16748) with cprp were hampered by the lack of a clearly identifiable mutant phenotype, but interestingly, overexpression of either ddr48 or cprp in S. cerevisiae Y16748 led to a conspicuous and comparable reduction in growth rate. This observation, combined with the known role of DDR48 proteins from a range of fungal species in nutrient starvation and stress responses, raises the possibility that this family of proteins plays a role in triggering oligotrophic growth. Localization studies via the production of a Cprp:GFP fusion protein in C. passeckerianus showed clear localization adjacent to the hyphal septa and, to a lesser extent, cell walls, which is consistent with the identification of DDR48 as a cell wall-associated protein in various yeast species. To our knowledge this is the first study demonstrating that a DDR48-like protein plays a role in the regulation of a secondary metabolite, and represents the first DDR48-like protein from a basidiomycete. Potential homologs can be identified across much of the Dikarya, suggesting that this unusual protein may play a central role in regulating both primary and secondary metabolism in fungi.