Project description:Worldwide, number of mobile phone users have increased from 5.57 billion in 2011 to 6.8 billion in 2019. However short and long term impacts of the electromagnetic radiations emitting of mobile phone on tissue homeostasis with particular to brain proteome composition needs further investigation. In this study, we attempted a global proteome profiling study of rat hippocampus exposed to mobile phone radiation for 20 weeks (for 3 hrs/day for 5 days/week) to identify deregulated proteins and western blot analysis for validation. As a result, we identified 358 hippocampus proteins, of which 16 showed deregulation (log2 (exposed vs control). Majority of these deregulated proteins grouped to three clusters sharing similar molecular functions/pathways. A set of four proteins (Aldehyde dehydrogenase:Aldh5a1, Na+ K+ transporting ATPase:Atp1b2, plasma membrane calcium transporting ATPase:PMCA and protein S100b) presenting each functional pathways were selected as important molecules. Western blot analysis of this protein set, expect Atp1b2, in independent samples corroborated the mass spectrometry findings. Aldh5a1 involve in cellular energy metabolism, both Atp1b2 and PMCA responsible for membrane transport and protein S100b has neuroprotective role. In conclusion, we present deregulated hippocampus proteome upon mobile phone radiation which might impact healthy functioning of brain.
Project description:Worldwide, number of mobile phone users have increased from 5.57 billion in 2011 to 6.8 billion in 2019. However short and long term impacts of the electromagnetic radiations emitting of mobile phone on tissue homeostasis with particular to brain proteome composition needs further investigation. In this study, we attempted a global proteome profiling study of rat hippocampus exposed to mobile phone radiation for 20 weeks (for 3 hrs/day for 5 days/week) to identify deregulated proteins and western blot analysis for validation. As a result, we identified 358 hippocampus proteins, of which 16 showed deregulation (log2 (exposed/control)>±1.0, p-value<0.05). Majority of these deregulated proteins grouped to three clusters sharing similar molecular functions/pathways. A set of four proteins (Aldehyde dehydrogenase:Aldh5a1, Na+ K+ transporting ATPase:Atp1b2, plasma membrane calcium transporting ATPase:PMCA and protein S100b) presenting each functional pathways were selected as important molecules. Western blot analysis of this protein set, expect Atp1b2, in independent samples corroborated the mass spectrometry findings. Aldh5a1 involve in cellular energy metabolism, both Atp1b2 and PMCA responsible for membrane transport and protein S100b has neuroprotective role. In conclusion, we present deregulated hippocampus proteome upon mobile phone radiation which might impact healthy functioning of brain.
Project description:Worldwide, number of mobile phone users have increased from 5.57 billion in 2011 to 6.8 billion in 2019. However short and long term impacts of the electromagnetic radiations emitting of mobile phone on tissue homeostasis with particular to brain proteome composition needs further investigation. In this study, we attempted a global proteome profiling study of rat hippocampus exposed to mobile phone radiation for 20 weeks (for 3 hrs/day for 5 days/week) to identify deregulated proteins and western blot analysis for validation. As a result, we identified 358 hippocampus proteins, of which 16 showed deregulation (log2 (exposed vs control). Majority of these deregulated proteins grouped to three clusters sharing similar molecular functions/pathways. A set of four proteins (Aldehyde dehydrogenase:Aldh5a1, Na+ K+ transporting ATPase:Atp1b2, plasma membrane calcium transporting ATPase:PMCA and protein S100b) presenting each functional pathways were selected as important molecules. Western blot analysis of this protein set, expect Atp1b2, in independent samples corroborated the mass spectrometry findings. Aldh5a1 involve in cellular energy metabolism, both Atp1b2 and PMCA responsible for membrane transport and protein S100b has neuroprotective role. In conclusion, we present deregulated hippocampus proteome upon mobile phone radiation which might impact healthy functioning of brain.
Project description:Worldwide, number of mobile phone users have increased from 5.57 billion in 2011 to 6.8 billion in 2019. However short and long term impacts of the electromagnetic radiations emitting of mobile phone on tissue homeostasis with particular to brain proteome composition needs further investigation. In this study, we attempted a global proteome profiling study of rat hippocampus exposed to mobile phone radiation for 20 weeks (for 3 hrs/day for 5 days/week) to identify deregulated proteins and western blot analysis for validation. As a result, we identified 358 hippocampus proteins, of which 16 showed deregulation (log2 (exposed/control), p-value<0.05). Majority of these deregulated proteins grouped to three clusters sharing similar molecular functions/pathways. A set of four proteins (Aldehyde dehydrogenase:Aldh5a1, Na+ K+ transporting ATPase:Atp1b2, plasma membrane calcium transporting ATPase:PMCA and protein S100b) presenting each functional pathways were selected as important molecules. Western blot analysis of this protein set, expect Atp1b2, in independent samples corroborated the mass spectrometry findings. Aldh5a1 involve in cellular energy metabolism, both Atp1b2 and PMCA responsible for membrane transport and protein S100b has neuroprotective role. In conclusion, we present deregulated hippocampus proteome upon mobile phone radiation which might impact healthy functioning of brain.
Project description:RNA silencing is a mechanism for regulating gene expression at the transcriptional and post-transcriptional levels. Its functions include regulating endogenous gene expression and protecting the cell against viruses and invading transposable elements (TEs). A key component of the mechanism is small RNAs (sRNAs) of 21-24 nucleotides (nt) in length, which direct the silencing machinery in a sequence specific manner to target nucleic acids. sRNAs of 24 nt are involved in methylation of cytosine residues of target loci in three sequence contexts (CG, CHG and CHH), referred to as RNA-directed DNA methylation (RdDM). We previously demonstrated that 24 nt sRNAs are mobile from shoot to root in Arabidopsis thaliana. In this study we demonstrated that methylation of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot. Furthermore, we found that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. These findings were made using base-resolution next generation sequencing approaches and genome wide analyses. Specific classes of short TEs are the predominant targets of mobile sRNA-dependent DNA methylation; classes typically found in gene-rich euchromatic regions. Mobile sRNA-regulated genes were also identified. Mechanistically, we demonstrate that mobile sRNA-dependent non-CG methylation is largely independent of the CMT2/3 RdDM pathway but dependent upon the DRM1/DRM2 RdDM pathway. This is in contrast to non-mobile sRNA-dependent DNA methylation, which predominantly depends upon the CMT2/3 RdDM pathway. These data are complementary to the small RNA sequencing data from Arabidopsis root grafts described in Molnar et al (Science, 2010 May 14;328(5980):872-5).
Project description:We recruited 24 Mongolian volunteers,6 of which were T2D cases(sample T1-T6), 6 were prediabetes cases(sample P1-P6), and 12 were health cases(sample C1-C12). The metagenomic analysis of gut microbiota from the volunteers’ fecal samples was performed. We compared the microbial differences in the three groups, and analyzed the differences of the stool microbial function.
Project description:Interventions: control group:Telephone follow-up;intervention group 1:Use the intelligent follow-up mobile phone APP platform;intervention group 2:Use the mobile APP and turn off the automatic measurement of stoma
Primary outcome(s): Complications of enterostomy;self-efficacy;anxiety;depression;sleep;caregiver burden
Study Design: Parallel