ABSTRACT: Effects and microbiota changes following oral lyophilized fecal microbiota transplantation capsules in canine with chronic enteropathy: A case report
Project description:Case Report: Microbial changes and clinical findings following long-term fecal microbiota transplantation in a severe ulcerative colitis patient
| PRJNA362197 | ENA
Project description:Canine chronic enteropathy observation study
Project description:We performed a phase I clinical trial to assess the safety and feasibility of fecal microbiota transplantation (FMT) and re-induction of anti-PD-1 immunotherapy in patients with anti-PD-1-refractory metastatic melanoma. FMT donors were two metastatic melanoma patients who achieved a durable complete response. FMT recipient patients were metastatic melanoma patients who failed at least one anti-PD-1 line of treatment. Each recipient patient received FMT implants from only one of the two donors. FMT was conducted by both colonoscopy and oral ingestion of stool capsules, followed by anti-PD-1 re-treatment (Nivolumab, BMS). Recipient patients underwent pre- and post-treatment stool sampling, tissue biopsy of both gut and tumor, and total body imaging. Clinical responses were observed in three patients, including two partial responses and one complete response. Notably, treatment with FMT was associated with favorable changes in immune cell infiltrates and gene expression profiles in both the gut lamina propria and the tumor microenvironment.
Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:The baseline immune landscape of spontaneous canine HNSCC tumors was asssessed using immunohistochemistry and nanostring gene expression profiling of 34 canine oral carcinoma tumors and two normal oral mucosal tissue samples.
Project description:We report the first case series of ICI associated colitis successfully treated with fecal microbiota transplantation (FMT), with reconstitution of the gut microbiome and a relative increase in the proportion of regulatory T cells (Tregs) within the colonic mucosa. These preliminary data provide evidence that modulation of the gut microbiome may abrogate ICI-associated colitis.